Spaces:
Running
Running
File size: 4,501 Bytes
b36a913 0cb64ee b36a913 5fd9c92 b36a913 5fd9c92 b36a913 5fd9c92 b36a913 5fd9c92 b36a913 5fd9c92 b36a913 5fd9c92 b36a913 5fd9c92 b36a913 5fd9c92 b36a913 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import base64
import io
import os
import random
import gradio as gr
import numpy as np
import torch
from colpali_engine.models import ColPali, ColPaliProcessor
from datasets import load_dataset
from dotenv import load_dotenv
from PIL import Image, ImageDraw
from qdrant_client import QdrantClient
from qdrant_client.http import models
from tqdm import tqdm
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from typing import Iterable
# Load environment variables
load_dotenv()
# Set up device
if torch.cuda.is_available():
device = "cuda:0"
elif torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
print(f"Using device: {device}")
# Set up Qdrant client
QDRANT_URL = os.getenv("QDRANT_URL")
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
qdrant_client = QdrantClient(
url=QDRANT_URL,
api_key=QDRANT_API_KEY,
prefer_grpc=True,
)
# Load dataset and set up model
dataset = load_dataset("davanstrien/ufo-ColPali", split="train")
collection_name = "ufo"
model_name = "davanstrien/finetune_colpali_v1_2-ufo-4bit"
colpali_model = ColPali.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map=device,
)
colpali_processor = ColPaliProcessor.from_pretrained(
"vidore/colpaligemma-3b-pt-448-base"
)
def search_images_by_text(query_text, top_k=5):
with torch.no_grad():
batch_query = colpali_processor.process_queries([query_text]).to(
colpali_model.device
)
query_embedding = colpali_model(**batch_query)
multivector_query = query_embedding[0].cpu().float().numpy().tolist()
results = qdrant_client.query_points(
collection_name=collection_name,
query=multivector_query,
limit=top_k,
timeout=60,
)
print(results)
return results
def search_by_text_and_return_images(query_text, top_k=5):
results = search_images_by_text(query_text, top_k)
print(results)
row_ids = [r.id for r in results.points]
subset = dataset.select(row_ids)
return list(subset["image"])
class Geocities90s(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.yellow,
secondary_hue: colors.Color | str = colors.purple,
neutral_hue: colors.Color | str = colors.gray,
font: fonts.Font | str = fonts.GoogleFont("Comic Neue"),
font_mono: fonts.Font | str = fonts.GoogleFont("VT323"),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
font=(font, "Comic Sans MS", "ui-sans-serif", "sans-serif"),
font_mono=(font_mono, "Courier New", "monospace"),
)
self.set(
body_background_fill="url('https://web.archive.org/web/20091020152706/http://hk.geocities.com/neonlightfantasy/image/stars.gif')",
button_primary_background_fill="linear-gradient(90deg, *primary_500, *secondary_500)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_500, *primary_500)",
button_primary_text_color="*neutral_50",
)
geocities90s = Geocities90s()
css = """
body {
margin: 0;
padding: 0;
color: #00ff00;
font-family: 'Comic Sans MS', cursive;
}
.gradio-container {
background-image: url('https://i.ytimg.com/vi/5WapcCXEcXA/maxresdefault.jpg');
background-repeat: repeat;
background-size: 300px 300px;
}
h1 {
text-align: center;
color: #ff00ff;
text-shadow: 2px 2px #000000;
font-size: 36px;
}
.yellow-text {
color: #ffff00;
text-shadow: 2px 2px #000000;
font-weight: bold;
}
"""
demo = gr.Interface(
fn=search_by_text_and_return_images,
inputs=[
gr.Textbox(
label="Enter your cosmic query",
placeholder="e.g., alien abduction, crop circles",
),
gr.Slider(
minimum=1,
maximum=10,
step=1,
label="Number of classified documents",
value=5,
),
],
outputs=gr.Gallery(label="Declassified UFO Sightings", elem_id="gallery"),
title="🛸 Top Secret UFO Document Search 🛸",
description="<marquee direction='left' scrollamount='5' class='yellow-text'>Uncover the truth that's out there! The government doesn't want you to know!</marquee>",
css=css,
allow_flagging="never",
theme=geocities90s,
)
if __name__ == "__main__":
demo.launch()
|