import numpy as np from scipy.integrate import solve_ivp import matplotlib.pyplot as plt class SelfAwareNetwork: def __init__(self, num_neurons, learning_rate): self.num_neurons = num_neurons self.learning_rate = learning_rate self.weights = np.random.rand(num_neurons) self.state = np.zeros(num_neurons) def activation_function(self, x, t, n): hbar = 1.0545718e-34 # Reduced Planck constant in J·s omega = 1/np.sqrt(137) # Angular frequency related to fine-structure constant term1 = hbar * omega * (n + 0.5) term2 = np.sin(omega * x + np.pi/4) * np.exp(-t) return term1 + term2 def neuron_dynamics(self, t, y): n = np.arange(self.num_neurons) dydt = -y + self.activation_function(y, t, n) return dydt def update_weights(self, state): self.weights += self.learning_rate * state def solve_dynamics(self, t_span, y0): sol = solve_ivp(self.neuron_dynamics, t_span, y0, method='RK45', vectorized=False) return sol.t, sol.y def evaluate_performance(self, target_state): error = np.linalg.norm(self.state - target_state) return error def adjust_learning_rate(self, performance_metric): if performance_metric > 0.1: self.learning_rate *= 0.9 else: self.learning_rate *= 1.1 def self_optimize(self, target_state, t_span, y0): t, y = self.solve_dynamics(t_span, y0) self.state = y[:, -1] performance = self.evaluate_performance(target_state) self.adjust_learning_rate(performance) self.update_weights(self.state) def plot_state_evolution(self, t, y): plt.plot(t, y.T) plt.xlabel('Time') plt.ylabel('Neuron States') plt.title('State Evolution of Neurons') plt.show() # Example usage network = SelfAwareNetwork(num_neurons=3, learning_rate=0.01) # Reduced the number of neurons t_span = (0, 5) # Shortened the time span y0 = np.random.rand(3) # Adjusted for the reduced number of neurons target_state = np.ones(3) network.self_optimize(target_state, t_span, y0) t, y = network.solve_dynamics(t_span, y0) network.plot_state_evolution(t, y)