File size: 4,434 Bytes
c4f995d
 
 
 
 
b3159ec
 
c4f995d
 
 
 
b3159ec
 
 
 
 
c4f995d
 
 
b3159ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4f995d
9cc5d1c
c4f995d
 
 
 
 
b3159ec
 
 
 
 
 
 
 
c4f995d
 
 
 
 
 
b3159ec
 
 
 
c4f995d
b3159ec
 
 
c4f995d
 
 
 
 
 
b3159ec
 
 
 
c4f995d
b3159ec
 
 
 
 
 
 
 
c4f995d
 
 
 
 
b3159ec
 
 
 
 
 
c4f995d
b3159ec
 
c4f995d
 
 
 
 
 
b3159ec
c4f995d
b3159ec
 
 
 
636ba9a
 
 
b3159ec
c4f995d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import requests
import json


class VectaraQuery():
    def __init__(self, api_key: str, corpus_keys: list[str], prompt_name: str = None):
        self.corpus_keys = corpus_keys
        self.api_key = api_key
        self.prompt_name = prompt_name if prompt_name else "vectara-experimental-summary-ext-2023-12-11-sml"
        self.conv_id = None

    
    def get_body(self, query_str: str, stream: False):
        corpora_list = [{
                'corpus_key': corpus_key, 'lexical_interpolation': 0.005
            } for corpus_key in self.corpus_keys
        ]

        return {
            'query': query_str,
            'search':
            {
                'corpora': corpora_list,
                'offset': 0,
                'limit': 50,
                'context_configuration':
                {
                    'sentences_before': 2,
                    'sentences_after': 2,
                    'start_tag': "%START_SNIPPET%",
                    'end_tag': "%END_SNIPPET%",
                },
                'reranker':
                {
                    'type': 'mmr'
                },
            },
            'generation':
            {
                'prompt_name': self.prompt_name,
                'max_used_search_results': 10,
                'response_language': 'eng',
                'citations':
                {
                    'style': 'none'
                }
            },
            'chat':
            {
                'store': True
            },
            'stream_response': stream
        }
    

    def get_headers(self):
        return {
            "Content-Type": "application/json",
            "Accept": "application/json",
            "x-api-key": self.api_key,
            "grpc-timeout": "60S"
        }
    
    def get_stream_headers(self):
        return {
            "Content-Type": "application/json",
            "Accept": "text/event-stream",
            "x-api-key": self.api_key,
            "grpc-timeout": "60S"
        }

    def submit_query(self, query_str: str):

        if self.conv_id:
            endpoint = f"https://api.vectara.io/v2/chats/{self.conv_id}/turns"
        else:
            endpoint = "https://api.vectara.io/v2/chats"

        body = self.get_body(query_str, stream=False)

        response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers())
        if response.status_code != 200:
            print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
            return "Sorry, something went wrong in my brain. Please try again later."

        res = response.json()

        if self.conv_id is None:
            self.conv_id = res['chat_id']

        summary = res['answer']

        # FIGURE OUT HOW TO IMPLEMENT THIS IN APIV2
        # if chat and chat['status'] is not None:
        #     st_code = chat['status']
        #     print(f"Chat query failed with code {st_code}")
        #     if st_code == 'RESOURCE_EXHAUSTED':
        #         self.conv_id = None
        #         return 'Sorry, Vectara chat turns exceeds plan limit.'
        #     return 'Sorry, something went wrong in my brain. Please try again later.'
        
        return summary

    def submit_query_streaming(self, query_str: str):

        if self.conv_id:
            endpoint = f"https://api.vectara.io/v2/chats/{self.conv_id}/turns"
        else:
            endpoint = "https://api.vectara.io/v2/chats"

        body = self.get_body(query_str, stream=True)

        response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_stream_headers(), stream=True) 
        
        if response.status_code != 200:
            print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
            return "Sorry, something went wrong in my brain. Please try again later."

        chunks = []
        for line in response.iter_lines():
            line = line.decode('utf-8')
            if line:  # filter out keep-alive new lines
                key, value = line.split(':', 1)
                if key == 'data':
                    line = json.loads(value)
                    if line['type'] == 'generation_chunk':
                        chunk = line['generation_chunk']
                        chunks.append(chunk)
                        yield chunk

        return ''.join(chunks)