#!/usr/bin/env python import os import random from threading import Thread # noqa from typing import Iterator import gradio as gr import spaces import torch # noqa from transformers import ( AutoModelForCausalLM, # noqa AutoTokenizer, # noqa TextIteratorStreamer, # noqa ) from chat_interface_preference import ChatInterface MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192")) if torch.cuda.is_available(): model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct" model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_id) @spaces.GPU def generate( message: str, chat_history: list[tuple[str, str]], max_new_tokens: int = 1024, temperature: float = 0.06, top_p: float = 0.95, top_k: int = 40, repetition_penalty: float = 1.2, ) -> Iterator[str]: system_message = random.choice(["concise", "explicit", "simple", "complex", "usefull", "helpfull"]) conversation = [{"role": "system", "content": f"Communicate {system_message}."}] for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = ChatInterface( fn=generate, prefence_technique="kto", min_turns=1, max_turns=10, repo_id="llm-human-feedback-collector-chat-interface-kto", chatbot=gr.Chatbot(height=450, label="Meta-Llama-3.1-8B-Instruct", show_share_button=True), cache_examples=False, additional_inputs=[ gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.05, maximum=1.2, step=0.05, value=0.7, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], examples=[ ["""What word doesn't make sense in this row: "car, airplane, lama, bus"?"""], ["Write a news article about the usage of Lama's by the CSI"], ["What are great things cook when getting started with Asian cooking?"], ["Who was Anthony Bourdain?"], ], title="πŸ’ͺ🏽🦾 Human Feedback Collector | Meta-Llama-3.1-8B-Instruct | (KTO) 🦾πŸ’ͺ🏽", description="".join( [ "This is an adaptation of the [`gr.ChatInferface`](https://www.gradio.app/docs/gradio/chatinterface) which also uses the [`huggingface_hub.CommitScheduler`](https://huggingface.co/docs/huggingface_hub/main/en/package_reference/hf_api#huggingface_hub.CommitScheduler) to allow for human feedback collection. ", "Another cool tool for capturing Gradio interactions is the [`gr.HuggingFaceDatasetSaver`](https://www.gradio.app/guides/using-flagging#the-hugging-face-dataset-saver-callback). ", "This demo shows how you might capture human feedback directly from applications within Gradio. ", "The captured feedback can directly be used for fine-tuning LLMs within framework like [transformers](https://github.com/huggingface/transformers), [TRL](https://github.com/huggingface/trl) or [AutoTrain](https://huggingface.co/autotrain), ", "however, it might benefit from additional data curation with something like [Argilla](https://github.com/argilla-io/argilla/) for human feedback and/or [distilabel](https://github.com/argilla-io/distilabel/) for AI feedback. Argilla can even be [deployed for free on Hugging Face Spaces](https://argilla-io.github.io/argilla/latest/getting_started/huggingface-spaces/).", ] ), ) with gr.Blocks(css="style.css") as demo: chat_interface.render() if __name__ == "__main__": demo.queue(max_size=20).launch()