Spaces:
Running
Running
File size: 17,313 Bytes
2b5689e 174062d 2b5689e 7172210 2b5689e 7172210 174062d 2b5689e 174062d 2b5689e 174062d 2b5689e 174062d 2b5689e 174062d 2b5689e 174062d 2b5689e 174062d 2b5689e 174062d 2b5689e 174062d 2b5689e 174062d 2b5689e 174062d 2b5689e 174062d 2b5689e 174062d 2b5689e 174062d 2b5689e 174062d 2b5689e 174062d 2b5689e 174062d 2b5689e 174062d 2b5689e 174062d 2b5689e d05d8fb 2b5689e d05d8fb 2b5689e d05d8fb 2b5689e d05d8fb 2b5689e d05d8fb 2b5689e d05d8fb 2b5689e d05d8fb 2b5689e d05d8fb 2b5689e d05d8fb 2b5689e 174062d d05d8fb 174062d d05d8fb 2b5689e d05d8fb 2b5689e d05d8fb 2b5689e d05d8fb 174062d d05d8fb 2b5689e d05d8fb 2b5689e 174062d d05d8fb 2b5689e 174062d d05d8fb 2b5689e d05d8fb 2b5689e d05d8fb 2b5689e d05d8fb 174062d d05d8fb 2b5689e 174062d 2b5689e 174062d 2b5689e 174062d d05d8fb 174062d 2b5689e 174062d 2b5689e 174062d 2b5689e 174062d 2b5689e 174062d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import gradio as gr
import pandas as pd
import numpy as np
import random
import plotly.graph_objects as go
from bs4 import BeautifulSoup
import plotly.express as px
file_result_score = 'ko_bench.csv'
file_full_lb = 'mt_bench_240805.csv'
def add_hf_link(row):
organization, model = row['model'].split('__')
if organization.lower() not in ['google', 'openai', 'anthropic']:
row['link'] = f"https://huggingface.co/{organization}/{model}"
if organization.lower() == 'google' and 'gemini' in model:
row['link'] = "https://ai.google.dev/gemini-api"
return row
# read csv
df_result_score = pd.read_csv(file_result_score)
df_full_lb = pd.read_csv(file_full_lb)
# dataframe
df = pd.DataFrame(df_result_score)
df['model'] = df['model'].str.split('__').str[1]
df_rs = pd.DataFrame(df_result_score)
df_rs['link'] = ''
df_rs = df_rs.apply(add_hf_link, axis=1)
df_rs['organization'] = df_rs['model'].str.split('__').str[0]
df_rs['model'] = df_rs['model'].str.split('__').str[1]
df_full_lboard = pd.DataFrame(df_full_lb)
df_full_lboard.replace('GPT-4-1106-preview', 'gpt-4-0125-preview', inplace=True) # MT-bench์ GPT-4-1106-preview ๋ฅผ gpt-4-0125-preview๋ก ๋ณ๊ฒฝ
df_rs.replace("", np.nan, inplace=True) # ๋ชจ๋ธ๋ณ turn1,2 score ํฉ๋ณ
def custom_mean(series):
if series.name == 'link' or series.name == 'organization':
return series.values[0]
numeric_series = pd.to_numeric(series, errors='coerce') # ์๋ฆฌ์ฆ๋ฅผ ์ซ์๋ก ๋ณํ
return numeric_series.mean() if not numeric_series.isna().all() else np.nan # NaN์ด ์๋ ๊ฐ์ด ํ๋๋ผ๋ ์์ผ๋ฉด ํ๊ท ๊ณ์ฐ
def get_mt_bench(model): # ๋์๋ฌธ์ ๋ฌด์ํ๊ณ ๋ชจ๋ธ์ ๋งค์นญํ๊ธฐ ์ํ ํจ์ ์ ์
model_lower = model.lower()
matching_rows = df_full_lboard[df_full_lboard['Model'].str.lower() == model_lower]
if not matching_rows.empty:
return matching_rows['MT-bench (score)'].values[0]
return ''
def get_organization(row): # ๋์๋ฌธ์ ๋ฌด์ํ๊ณ ๋ชจ๋ธ์ ๋งค์นญํ๊ธฐ ์ํ ํจ์ ์ ์
model = row['model']
if pd.Series(model).str.contains('mistral-large', case=False, regex=True).any():
return 'Mistral'
elif pd.Series(model).str.contains('koni-llama3-8b', case=False, regex=True).any():
return 'KISTI'
model_lower = model.lower()
matching_rows = df_full_lboard[df_full_lboard['Model'].str.lower() == model_lower]
if not matching_rows.empty:
return matching_rows['Organization'].values[0]
if row['organization'] != '' and pd.notna(row['organization']):
organization = row['organization'].lower()
if organization == 'qwen':
return 'Alibaba'
elif organization == 'google':
return 'Google'
elif organization == 'lgai-exaone':
return 'LGAI'
return row['organization']
def get_license(model): # ๋์๋ฌธ์ ๋ฌด์ํ๊ณ ๋ชจ๋ธ์ ๋งค์นญํ๊ธฐ ์ํ ํจ์ ์ ์
if pd.Series(model).str.contains('mistral-large|WizardLM-2-8x22B|ko-gemma-2', case=False, regex=True).any():
return 'Apache-2.0'
elif pd.Series(model).str.contains('koni-llama3-8b', case=False, regex=True).any():
return 'llama3'
elif pd.Series(model).str.contains('Ko-Llama-3-8B-Instruct', case=False, regex=True).any():
return 'Llama Community'
elif pd.Series(model).str.contains('claude|gemini|EXAONE-3.0-7.8B-Instruct', case=False, regex=True).any():
return 'Proprietary'
elif pd.Series(model).str.contains('qwen', case=False, regex=True).any():
if pd.Series(model).str.contains('max', case=False, regex=True).any():
return 'Proprietary'
else:
return 'Qianwen LICENSE'
model_lower = model.lower()
matching_rows = df_full_lboard[df_full_lboard['Model'].str.lower() == model_lower]
if not matching_rows.empty:
return matching_rows['License'].values[0]
return ''
def get_link(row): # ๋์๋ฌธ์ ๋ฌด์ํ๊ณ ๋ชจ๋ธ์ ๋งค์นญํ๊ธฐ ์ํ ํจ์ ์ ์
if row['link'] != '' and pd.notna(row['link']):
return row
model_lower = row['model'].lower()
matching_rows = df_full_lboard[df_full_lboard['key'].str.lower() == model_lower]
if not matching_rows.empty:
row['link'] = matching_rows['Link'].values[0]
return row
def add_link(row):
if pd.isna(row['link']):
row['link'] = ''
if row['link'] != '':
row['model'] = f"<a href={row['link']}>{row['model']}</a>"
return row
# dataframe_full
df_full_rs = df_rs.copy()
df_full_rs.rename(columns={'score': 'Ko-Bench'}, inplace=True)
df_full_rs = df_full_rs.drop(columns=['Coding', 'Extraction', 'Humanities', 'Math', 'Reasoning', 'Roleplay', 'STEM', 'Writing'])
df_full_rs = df_full_rs.drop(columns=['turn']) # ๋ชจ๋ธ๋ณ turn1,2 score ํฉ๋ณ
df_full_rs = df_full_rs.groupby(['model', 'judge_model']).agg({col: custom_mean for col in df_full_rs.columns if col not in ['model', 'judge_model']}).reset_index()
df_full_rs = df_full_rs.round(2)
df_full_rs.replace("", np.nan, inplace=True)
df_full_rs['Ko-Bench/openai'] = '' # Ko-Bench/openai, Ko-Bench/keval ์ด ์ถ๊ฐ
df_full_rs['Ko-Bench/keval'] = ''
for idx, j_model in df_full_rs['judge_model'].items():
if j_model == 'keval':
df_full_rs.at[idx, 'Ko-Bench/keval'] = df_full_rs.at[idx, 'Ko-Bench']
else :
df_full_rs.at[idx, 'Ko-Bench/openai'] = df_full_rs.at[idx, 'Ko-Bench']
df_full_rs = df_full_rs.drop(columns=['judge_model'])
df_full_rs = df_full_rs.groupby(['model']).agg({col: custom_mean for col in df_full_rs.columns if col not in ['model']}).reset_index() # Ko-Bench/openai, Ko-Bench/keval ํ ํฉ๋ณ
df_full_rs = df_full_rs.round(2)
df_full_rs.replace("", np.nan, inplace=True)
df_full_rs['MT-Bench'] = '' # MT-Bench ์ด ์ถ๊ฐ
df_full_rs['MT-Bench'] = df_full_rs['model'].apply(get_mt_bench)
df_full_rs['MT-Bench'] = df_full_rs['MT-Bench'].str.replace('-', '', regex=False)
df_full_rs['Organization'] = '' # Organization ์ด ์ถ๊ฐ
df_full_rs['Organization'] = df_full_rs.apply(get_organization, axis=1 )
df_full_rs['License'] = '' # License ์ด ์ถ๊ฐ
df_full_rs['License'] = df_full_rs['model'].apply(get_license)
df_full_rs = df_full_rs.sort_values(by='Ko-Bench', ascending=False)
df_full_rs.insert(0, 'rank', range(1, len(df_full_rs) + 1))
plot_models = df_full_rs['model'].unique() # model detail view๋ฅผ ์ํ models ๋ฆฌ์คํธ
df_full_rs = df_full_rs.apply(get_link, axis=1)
df_full_rs = df_full_rs.apply(add_link, axis=1)
df_full_rs = df_full_rs.drop(columns=['Ko-Bench', 'link', 'organization'])
# dataframe
df_rs['MT-Bench'] = '' # MT-Bench ์ด ์ถ๊ฐ
df_rs['MT-Bench'] = df_rs['model'].apply(get_mt_bench)
df_rs['MT-Bench'] = df_rs['MT-Bench'].str.replace('-', '', regex=False)
df_rs.replace("", np.nan, inplace=True) # ๋ชจ๋ธ๋ณ turn1,2 score ํฉ๋ณ
# dataframe_openai
df_openai = pd.DataFrame(df_rs)
df_openai = df_openai[df_openai['judge_model'] != 'keval']
df_openai = df_openai.drop(columns=['judge_model', 'turn']) # ๋ชจ๋ธ๋ณ turn1,2 score ํฉ๋ณ
df_openai = df_openai.groupby('model').agg({col: custom_mean for col in df_openai.columns if col != 'model'}).reset_index()
df_openai = df_openai.round(2)
df_openai = df_openai.apply(get_link, axis=1)
df_openai = df_openai.apply(add_link, axis=1)
df_openai = df_openai.drop(columns=['link', 'organization'])
df_openai = df_openai.sort_values(by='score', ascending=False)
df_openai.insert(0, 'rank', range(1, len(df_openai) + 1))
# dataframe_keval
df_keval = pd.DataFrame(df_rs)
df_keval = df_keval[df_keval['judge_model'] == 'keval']
df_keval = df_keval.drop(columns=['judge_model', 'turn']) # ๋ชจ๋ธ๋ณ turn1,2 score ํฉ๋ณ
df_keval = df_keval.groupby('model').agg({col: custom_mean for col in df_keval.columns if col != 'model'}).reset_index()
df_keval = df_keval.round(2)
df_keval = df_keval.apply(get_link, axis=1)
df_keval = df_keval.apply(add_link, axis=1)
df_keval = df_keval.drop(columns=['link', 'organization'])
df_keval = df_keval.sort_values(by='score', ascending=False)
df_keval.insert(0, 'rank', range(1, len(df_keval) + 1))
# model detail view
plot_models_list = plot_models.tolist()
CATEGORIES = ["Writing", "Roleplay", "Reasoning", "Math", "Coding", "Extraction", "STEM", "Humanities"]
colors_openai = ['#ff0000', '#ff1493', '#115e02', '#21ad05']
colors_keval = ['#ff0000', '#ff1493', '#0000ff', '#0592eb']
random.seed(42)
def search_dataframe(query): # df ๊ฒ์ ํจ์ ์ ์
if not query:
return df # ๊ฒ์์ด๊ฐ ์์ ๊ฒฝ์ฐ ์ ์ฒด DataFrame ๋ฐํ
filtered_df = df[df.apply(lambda row: any(row.astype(str) == query), axis=1)]
return filtered_df
def radar_chart(categories, Top1_turn1, Top1_turn2, Selected_model_turn1, Selected_model_turn2, category_labels, str): # plot ๊ทธ๋ฆฌ๋ ํจ์
#categories = categories.split(',')
Top1_turn1 = [item for sublist in Top1_turn1 for item in sublist]
Top1_turn2 = [item for sublist in Top1_turn2 for item in sublist]
Selected_model_turn1 = [item for sublist in Selected_model_turn1 for item in sublist]
Selected_model_turn2 = [item for sublist in Selected_model_turn2 for item in sublist]
values_lists = [
list(map(float, Top1_turn1)),
list(map(float, Top1_turn2)),
list(map(float, Selected_model_turn1)),
list(map(float, Selected_model_turn2))
]
if str == "openai": colors = colors_openai
else: colors = colors_keval
if str == "openai": title_text = "< Openai >"
else: title_text = "< Keval >"
fig = go.Figure()
for i, values in enumerate(values_lists):
if len(categories) != len(values):
return f"Error in dataset {i+1}: Number of categories and values must be the same."
fig.add_trace(go.Scatterpolar(
r=values + [values[0]], # Closing the loop of the radar chart
theta=categories + [categories[0]], # Closing the loop of the radar chart
mode='lines',
name=category_labels[i], # Label for the dataset
line = dict(color= colors[i])
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, max(max(values) for values in values_lists)],
showline=True,
),
angularaxis=dict(
rotation=0,
direction='clockwise'
)
),
showlegend=True,
#width=650, # ์ ์ ํ ๋๋น ์ค์
#height=650, # ์ ์ ํ ๋์ด ์ค์
margin=dict(l=1000, r=20, t=20, b=20),
#autosize = False,
paper_bgcolor='white',
plot_bgcolor='lightgrey',
title=dict(
text=title_text, # ์ ๋ชฉ์ ์ํ๋ ํ
์คํธ๋ก ๋ณ๊ฒฝ
x=0.5, # ์ ๋ชฉ์ x ์์น (0=์ผ์ชฝ, 0.5=์ค์, 1=์ค๋ฅธ์ชฝ)
xanchor='center', # ์ ๋ชฉ์ x ์์น ๊ธฐ์ค (center, left, right)
y=0.95, # ์ ๋ชฉ์ y ์์น (0=ํ๋จ, 1=์๋จ)
yanchor='top' # ์ ๋ชฉ์ y ์์น ๊ธฐ์ค (top, middle, bottom)
)
)
return fig
def search_openai_plot(dropdown_model): # openai plot ํจ์ ์ ์
openai_top_model = df_openai.iat[0, df_openai.columns.get_loc('model')]
openai_top_model = BeautifulSoup(openai_top_model, 'html.parser').get_text()
condition1 = (df['judge_model'] != 'keval') & (df['turn'] == 1) & (df['model'] == openai_top_model)
top1_openai_turn1 = df.loc[condition1, 'Coding':'Writing'].values.tolist()
condition2 = (df['judge_model'] != 'keval') & (df['turn'] == 2) & (df['model'] == openai_top_model)
top1_openai_turn2 = df.loc[condition2, 'Coding':'Writing'].values.tolist()
condition3 = (df['judge_model'] != 'keval') & (df['turn'] == 1) & (df['model'] == dropdown_model)
openai_turn1 = df.loc[condition3, 'Coding':'Writing'].values.tolist()
condition4 = (df['judge_model'] != 'keval') & (df['turn'] == 2) & (df['model'] == dropdown_model)
openai_turn2 = df.loc[condition4, 'Coding':'Writing'].values.tolist()
category_labels = []
category_labels.append(openai_top_model + " /Turn 1")
category_labels.append(openai_top_model + " /Turn 2")
category_labels.append(dropdown_model + " /Turn 1")
category_labels.append(dropdown_model + " /Turn 2")
fig = radar_chart(CATEGORIES, top1_openai_turn1, top1_openai_turn2, openai_turn1, openai_turn2, category_labels,"openai")
return fig
def search_keval_plot(dropdown_model): # keval plot ํจ์ ์ ์
keval_top_model = df_keval.iat[0, df_keval.columns.get_loc('model')]
keval_top_model = BeautifulSoup(keval_top_model, 'html.parser').get_text()
condition1 = (df['judge_model'] == 'keval') & (df['turn'] == 1) & (df['model'] == keval_top_model)
top1_keval_turn1 = df.loc[condition1, 'Coding':'Writing'].values.tolist()
condition2 = (df['judge_model'] == 'keval') & (df['turn'] == 2) & (df['model'] == keval_top_model)
top1_keval_turn2 = df.loc[condition2, 'Coding':'Writing'].values.tolist()
condition3 = (df['judge_model'] == 'keval') & (df['turn'] == 1) & (df['model'] == dropdown_model)
keval_turn1 = df.loc[condition3, 'Coding':'Writing'].values.tolist()
condition4 = (df['judge_model'] == 'keval') & (df['turn'] == 2) & (df['model'] == dropdown_model)
keval_turn2 = df.loc[condition4, 'Coding':'Writing'].values.tolist()
category_labels = []
category_labels.append(keval_top_model + " /Turn 1")
category_labels.append(keval_top_model + " /Turn 2")
category_labels.append(dropdown_model + " /Turn 1")
category_labels.append(dropdown_model + " /Turn 2")
fig = radar_chart(CATEGORIES, top1_keval_turn1, top1_keval_turn2, keval_turn1, keval_turn2, category_labels, "keval")
return fig
# average
def plot_average():
fig = go.Figure()
colors = [px.colors.qualitative.Set2, px.colors.qualitative.Pastel2]
turn_df = df_full_rs
# gpt-4o
fig.add_trace(go.Scatter(x=turn_df['model'], y=turn_df['Ko-Bench/openai'], mode='lines+markers',
name=f'gpt-4o(Average)',
line=dict(color=colors[0][0], dash='dash'),
marker=dict(symbol='x', size=10)))
# keval
fig.add_trace(go.Scatter(x=turn_df['model'], y=turn_df['Ko-Bench/keval'], mode='lines+markers',
name=f'keval(Average)',
line=dict(color=colors[0][1]),
marker=dict(symbol='circle', size=10)))
fig.update_layout(
title=f'Comparison of OpenAI ko_bench and keval ko_bench (Average)',
xaxis_title='Model',
yaxis_title='Score',
legend_title='Metric',
hovermode='x unified',
template='plotly_white'
)
fig.update_yaxes(range=[0, 10])
fig.update_layout(legend_traceorder="reversed")
return fig
#gradio
with gr.Blocks(css='assets/leaderboard.css') as demo:
gr.Markdown("")
gr.Markdown("# ๐ Ko-Bench Leaderboard")
gr.Markdown("")
gr.Markdown("#### The Ko-Bench is a leaderboard for evaluating the multi-level conversation ability and instruction-following ability of Korean Large Language Models (LLMs).")
gr.Markdown("- MT-Bench: a set of challenging multi-turn questions. We use GPT-4 to grade the model responses.")
gr.Markdown("- Ko-Bench/openai: a set of challenging multi-turn questions in Korean. We use GPT-4o to grade the model responses.")
gr.Markdown("- Ko-Bench/keval: a set of challenging multi-turn questions in Korean. We use the keval model as an evaluation model.")
gr.Markdown("")
gr.Markdown("github : https://github.com/davidkim205/Ko-Bench")
gr.Markdown("keval : https://huggingface.co/collections/davidkim205/k-eval-6660063dd66e21cbdcc4fbf1")
gr.Markdown("")
with gr.Row():
with gr.TabItem("Ko-Bench"):
gr.Dataframe(value=df_full_rs,
datatype=['html' if col == 'model' else 'markdown' for col in df_full_rs.columns])
with gr.Row():
with gr.TabItem("Average"):
gr.Plot(plot_average)
with gr.TabItem("Openai Judgment"):
gr.Dataframe(value=df_openai,
datatype=['html' if col == 'model' else 'markdown' for col in df_openai.columns])
with gr.TabItem("Keval Judgment"):
gr.Dataframe(value=df_keval,
datatype=['html' if col == 'model' else 'markdown' for col in df_keval.columns])
with gr.TabItem("Model Detail View"):
with gr.Blocks():
with gr.Row():
dropdown = gr.Dropdown(choices=plot_models_list, label="Choose a Model")
with gr.Row():
dataframe = gr.Dataframe(label="Model Detail View")
dropdown.change(fn=search_dataframe, inputs=dropdown, outputs=dataframe)
with gr.Row():
plot_openai = gr.Plot(label="Openai Plot")
dropdown.change(fn=search_openai_plot, inputs=dropdown, outputs=plot_openai)
plot_keval = gr.Plot(label="Keval Plot")
dropdown.change(fn=search_keval_plot, inputs=dropdown, outputs=plot_keval)
demo.launch(share=True, server_name="0.0.0.0", debug=True)
|