File size: 17,313 Bytes
2b5689e
 
 
 
 
174062d
 
2b5689e
 
7172210
2b5689e
 
7172210
174062d
 
 
 
 
 
 
 
2b5689e
 
 
 
 
 
174062d
 
2b5689e
174062d
 
 
 
2b5689e
 
 
 
 
 
174062d
 
2b5689e
 
 
 
 
 
 
 
 
 
174062d
 
2b5689e
 
 
 
 
 
 
 
 
174062d
 
 
 
 
 
 
 
 
 
 
2b5689e
 
174062d
2b5689e
 
 
174062d
 
 
 
 
 
 
 
 
2b5689e
 
 
 
 
 
 
174062d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b5689e
 
 
174062d
2b5689e
 
 
 
 
 
 
174062d
 
2b5689e
 
174062d
2b5689e
174062d
2b5689e
 
174062d
2b5689e
 
 
 
 
 
 
 
174062d
2b5689e
 
 
 
174062d
2b5689e
 
 
 
174062d
 
 
 
2b5689e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174062d
 
 
 
2b5689e
 
 
 
 
 
 
 
 
 
 
 
174062d
 
 
 
2b5689e
 
 
 
 
 
 
d05d8fb
 
2b5689e
 
 
 
 
 
 
 
d05d8fb
2b5689e
 
 
d05d8fb
 
2b5689e
 
 
d05d8fb
 
 
2b5689e
 
d05d8fb
 
 
 
 
2b5689e
 
 
 
 
 
 
 
 
d05d8fb
 
2b5689e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d05d8fb
 
2b5689e
d05d8fb
2b5689e
d05d8fb
 
 
 
 
 
 
 
2b5689e
 
 
 
174062d
 
 
 
d05d8fb
 
174062d
d05d8fb
2b5689e
d05d8fb
 
2b5689e
d05d8fb
 
2b5689e
d05d8fb
174062d
 
d05d8fb
 
2b5689e
d05d8fb
2b5689e
 
 
174062d
 
 
 
d05d8fb
2b5689e
174062d
d05d8fb
2b5689e
d05d8fb
 
2b5689e
d05d8fb
 
2b5689e
d05d8fb
174062d
 
d05d8fb
 
 
 
2b5689e
 
 
174062d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b5689e
174062d
2b5689e
174062d
d05d8fb
174062d
2b5689e
174062d
 
2b5689e
174062d
 
2b5689e
 
174062d
 
 
 
2b5689e
174062d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import gradio as gr
import pandas as pd
import numpy as np
import random
import plotly.graph_objects as go
from bs4 import BeautifulSoup
import plotly.express as px

file_result_score = 'ko_bench.csv'

file_full_lb = 'mt_bench_240805.csv'


def add_hf_link(row):
    organization, model = row['model'].split('__')
    if organization.lower() not in ['google', 'openai', 'anthropic']:
        row['link'] = f"https://huggingface.co/{organization}/{model}"
    if organization.lower() == 'google' and 'gemini' in model:
        row['link'] = "https://ai.google.dev/gemini-api"
    return row

# read csv
df_result_score = pd.read_csv(file_result_score)
df_full_lb = pd.read_csv(file_full_lb)

# dataframe
df = pd.DataFrame(df_result_score)
df['model'] = df['model'].str.split('__').str[1]

df_rs = pd.DataFrame(df_result_score)
df_rs['link'] = ''
df_rs = df_rs.apply(add_hf_link, axis=1)
df_rs['organization'] = df_rs['model'].str.split('__').str[0]
df_rs['model'] = df_rs['model'].str.split('__').str[1]
df_full_lboard = pd.DataFrame(df_full_lb)

df_full_lboard.replace('GPT-4-1106-preview', 'gpt-4-0125-preview', inplace=True) # MT-bench์˜ GPT-4-1106-preview ๋ฅผ  gpt-4-0125-preview๋กœ ๋ณ€๊ฒฝ
df_rs.replace("", np.nan, inplace=True)  # ๋ชจ๋ธ๋ณ„ turn1,2 score ํ•ฉ๋ณ‘

def custom_mean(series):
    if series.name == 'link' or series.name == 'organization':
        return series.values[0]
    numeric_series = pd.to_numeric(series, errors='coerce') # ์‹œ๋ฆฌ์ฆˆ๋ฅผ ์ˆซ์ž๋กœ ๋ณ€ํ™˜
    return numeric_series.mean() if not numeric_series.isna().all() else np.nan # NaN์ด ์•„๋‹Œ ๊ฐ’์ด ํ•˜๋‚˜๋ผ๋„ ์žˆ์œผ๋ฉด ํ‰๊ท  ๊ณ„์‚ฐ

def get_mt_bench(model): # ๋Œ€์†Œ๋ฌธ์ž ๋ฌด์‹œํ•˜๊ณ  ๋ชจ๋ธ์„ ๋งค์นญํ•˜๊ธฐ ์œ„ํ•œ ํ•จ์ˆ˜ ์ •์˜
    model_lower = model.lower()
    matching_rows = df_full_lboard[df_full_lboard['Model'].str.lower() == model_lower]
    if not matching_rows.empty:
        return matching_rows['MT-bench (score)'].values[0]
    return ''

def get_organization(row): # ๋Œ€์†Œ๋ฌธ์ž ๋ฌด์‹œํ•˜๊ณ  ๋ชจ๋ธ์„ ๋งค์นญํ•˜๊ธฐ ์œ„ํ•œ ํ•จ์ˆ˜ ์ •์˜
    model = row['model']
    if pd.Series(model).str.contains('mistral-large', case=False, regex=True).any():
        return 'Mistral'
    elif pd.Series(model).str.contains('koni-llama3-8b', case=False, regex=True).any():
        return 'KISTI'

    model_lower = model.lower()
    matching_rows = df_full_lboard[df_full_lboard['Model'].str.lower() == model_lower]
    if not matching_rows.empty:
        return matching_rows['Organization'].values[0]

    if row['organization'] != '' and pd.notna(row['organization']):
        organization = row['organization'].lower()
        if organization == 'qwen':
            return 'Alibaba'
        elif organization == 'google':
            return 'Google'
        elif organization == 'lgai-exaone':
            return 'LGAI'

    return row['organization']

def get_license(model): # ๋Œ€์†Œ๋ฌธ์ž ๋ฌด์‹œํ•˜๊ณ  ๋ชจ๋ธ์„ ๋งค์นญํ•˜๊ธฐ ์œ„ํ•œ ํ•จ์ˆ˜ ์ •์˜
    if pd.Series(model).str.contains('mistral-large|WizardLM-2-8x22B|ko-gemma-2', case=False, regex=True).any():
        return 'Apache-2.0'
    elif pd.Series(model).str.contains('koni-llama3-8b', case=False, regex=True).any():
        return 'llama3'
    elif pd.Series(model).str.contains('Ko-Llama-3-8B-Instruct', case=False, regex=True).any():
        return 'Llama Community'
    elif pd.Series(model).str.contains('claude|gemini|EXAONE-3.0-7.8B-Instruct', case=False, regex=True).any():
        return 'Proprietary'
    elif pd.Series(model).str.contains('qwen', case=False, regex=True).any():
        if pd.Series(model).str.contains('max', case=False, regex=True).any():
            return 'Proprietary'
        else:
            return 'Qianwen LICENSE'

    model_lower = model.lower()
    matching_rows = df_full_lboard[df_full_lboard['Model'].str.lower() == model_lower]
    if not matching_rows.empty:
        return matching_rows['License'].values[0]
    return ''

def get_link(row): # ๋Œ€์†Œ๋ฌธ์ž ๋ฌด์‹œํ•˜๊ณ  ๋ชจ๋ธ์„ ๋งค์นญํ•˜๊ธฐ ์œ„ํ•œ ํ•จ์ˆ˜ ์ •์˜
    if row['link'] != '' and pd.notna(row['link']):
        return row

    model_lower = row['model'].lower()
    matching_rows = df_full_lboard[df_full_lboard['key'].str.lower() == model_lower]
    if not matching_rows.empty:
        row['link'] = matching_rows['Link'].values[0]
    return row

def add_link(row):
    if pd.isna(row['link']):
        row['link'] = ''
    if row['link'] != '':
        row['model'] = f"<a href={row['link']}>{row['model']}</a>"
    return row

# dataframe_full
df_full_rs = df_rs.copy()
df_full_rs.rename(columns={'score': 'Ko-Bench'}, inplace=True)
df_full_rs = df_full_rs.drop(columns=['Coding', 'Extraction', 'Humanities', 'Math', 'Reasoning', 'Roleplay', 'STEM', 'Writing'])

df_full_rs = df_full_rs.drop(columns=['turn']) # ๋ชจ๋ธ๋ณ„ turn1,2 score ํ•ฉ๋ณ‘
df_full_rs = df_full_rs.groupby(['model', 'judge_model']).agg({col: custom_mean for col in df_full_rs.columns if col not in ['model', 'judge_model']}).reset_index()
df_full_rs = df_full_rs.round(2)
df_full_rs.replace("", np.nan, inplace=True)

df_full_rs['Ko-Bench/openai'] = '' # Ko-Bench/openai, Ko-Bench/keval ์—ด ์ถ”๊ฐ€
df_full_rs['Ko-Bench/keval'] = ''
for idx, j_model in df_full_rs['judge_model'].items():
    if j_model == 'keval':
        df_full_rs.at[idx, 'Ko-Bench/keval'] = df_full_rs.at[idx, 'Ko-Bench']
    else :
        df_full_rs.at[idx, 'Ko-Bench/openai'] = df_full_rs.at[idx, 'Ko-Bench']
df_full_rs = df_full_rs.drop(columns=['judge_model'])

df_full_rs = df_full_rs.groupby(['model']).agg({col: custom_mean for col in df_full_rs.columns if col not in ['model']}).reset_index() # Ko-Bench/openai, Ko-Bench/keval ํ–‰ ํ•ฉ๋ณ‘
df_full_rs = df_full_rs.round(2)
df_full_rs.replace("", np.nan, inplace=True)

df_full_rs['MT-Bench'] = ''  # MT-Bench ์—ด ์ถ”๊ฐ€
df_full_rs['MT-Bench'] = df_full_rs['model'].apply(get_mt_bench)
df_full_rs['MT-Bench'] = df_full_rs['MT-Bench'].str.replace('-', '', regex=False)

df_full_rs['Organization'] = '' # Organization ์—ด ์ถ”๊ฐ€
df_full_rs['Organization'] = df_full_rs.apply(get_organization, axis=1  )

df_full_rs['License'] = '' # License ์—ด ์ถ”๊ฐ€
df_full_rs['License'] = df_full_rs['model'].apply(get_license)

df_full_rs = df_full_rs.sort_values(by='Ko-Bench', ascending=False)
df_full_rs.insert(0, 'rank', range(1, len(df_full_rs) + 1))

plot_models = df_full_rs['model'].unique() # model detail view๋ฅผ ์œ„ํ•œ models ๋ฆฌ์ŠคํŠธ

df_full_rs = df_full_rs.apply(get_link, axis=1)
df_full_rs = df_full_rs.apply(add_link, axis=1)

df_full_rs = df_full_rs.drop(columns=['Ko-Bench', 'link', 'organization'])

# dataframe
df_rs['MT-Bench'] = ''  # MT-Bench ์—ด ์ถ”๊ฐ€
df_rs['MT-Bench'] = df_rs['model'].apply(get_mt_bench)
df_rs['MT-Bench'] = df_rs['MT-Bench'].str.replace('-', '', regex=False)

df_rs.replace("", np.nan, inplace=True)  # ๋ชจ๋ธ๋ณ„ turn1,2 score ํ•ฉ๋ณ‘


# dataframe_openai
df_openai = pd.DataFrame(df_rs)
df_openai = df_openai[df_openai['judge_model'] != 'keval']

df_openai = df_openai.drop(columns=['judge_model', 'turn']) # ๋ชจ๋ธ๋ณ„ turn1,2 score ํ•ฉ๋ณ‘
df_openai = df_openai.groupby('model').agg({col: custom_mean for col in df_openai.columns if col != 'model'}).reset_index()
df_openai = df_openai.round(2)

df_openai = df_openai.apply(get_link, axis=1)
df_openai = df_openai.apply(add_link, axis=1)
df_openai = df_openai.drop(columns=['link', 'organization'])

df_openai = df_openai.sort_values(by='score', ascending=False)
df_openai.insert(0, 'rank', range(1, len(df_openai) + 1))


# dataframe_keval
df_keval = pd.DataFrame(df_rs)
df_keval = df_keval[df_keval['judge_model'] == 'keval']

df_keval = df_keval.drop(columns=['judge_model', 'turn']) # ๋ชจ๋ธ๋ณ„ turn1,2 score ํ•ฉ๋ณ‘
df_keval = df_keval.groupby('model').agg({col: custom_mean for col in df_keval.columns if col != 'model'}).reset_index()
df_keval = df_keval.round(2)

df_keval = df_keval.apply(get_link, axis=1)
df_keval = df_keval.apply(add_link, axis=1)
df_keval = df_keval.drop(columns=['link', 'organization'])

df_keval = df_keval.sort_values(by='score', ascending=False)
df_keval.insert(0, 'rank', range(1, len(df_keval) + 1))


# model detail view
plot_models_list = plot_models.tolist()
CATEGORIES = ["Writing", "Roleplay", "Reasoning", "Math", "Coding", "Extraction", "STEM", "Humanities"]
colors_openai = ['#ff0000', '#ff1493', '#115e02', '#21ad05']
colors_keval = ['#ff0000', '#ff1493', '#0000ff', '#0592eb']
random.seed(42)

def search_dataframe(query): # df ๊ฒ€์ƒ‰ ํ•จ์ˆ˜ ์ •์˜
    if not query:
        return df  # ๊ฒ€์ƒ‰์–ด๊ฐ€ ์—†์„ ๊ฒฝ์šฐ ์ „์ฒด DataFrame ๋ฐ˜ํ™˜
    filtered_df = df[df.apply(lambda row: any(row.astype(str) == query), axis=1)]
    return filtered_df

def radar_chart(categories, Top1_turn1, Top1_turn2, Selected_model_turn1, Selected_model_turn2, category_labels, str): # plot ๊ทธ๋ฆฌ๋Š” ํ•จ์ˆ˜
    #categories = categories.split(',')
    Top1_turn1 = [item for sublist in Top1_turn1 for item in sublist]
    Top1_turn2 = [item for sublist in Top1_turn2 for item in sublist]
    Selected_model_turn1 = [item for sublist in Selected_model_turn1 for item in sublist]
    Selected_model_turn2 = [item for sublist in Selected_model_turn2 for item in sublist]

    values_lists = [
        list(map(float, Top1_turn1)),
        list(map(float, Top1_turn2)),
        list(map(float, Selected_model_turn1)),
        list(map(float, Selected_model_turn2))
    ]

    if str == "openai": colors = colors_openai
    else: colors = colors_keval
    if str == "openai": title_text = "< Openai >"
    else: title_text = "< Keval >"

    fig = go.Figure()

    for i, values in enumerate(values_lists):
        if len(categories) != len(values):
            return f"Error in dataset {i+1}: Number of categories and values must be the same."
        fig.add_trace(go.Scatterpolar(
            r=values + [values[0]],  # Closing the loop of the radar chart
            theta=categories + [categories[0]],  # Closing the loop of the radar chart
            mode='lines',
            name=category_labels[i], # Label for the dataset
            line = dict(color= colors[i])
        ))

    fig.update_layout(
        polar=dict(
            radialaxis=dict(
                visible=True,
                range=[0, max(max(values) for values in values_lists)],
                showline=True,
            ),
            angularaxis=dict(
                rotation=0,
                direction='clockwise'
            )
        ),
        showlegend=True,
        #width=650,  # ์ ์ ˆํ•œ ๋„ˆ๋น„ ์„ค์ •
        #height=650,  # ์ ์ ˆํ•œ ๋†’์ด ์„ค์ •
        margin=dict(l=1000, r=20, t=20, b=20),
        #autosize = False,
        paper_bgcolor='white',
        plot_bgcolor='lightgrey',
        title=dict(
            text=title_text,  # ์ œ๋ชฉ์„ ์›ํ•˜๋Š” ํ…์ŠคํŠธ๋กœ ๋ณ€๊ฒฝ
            x=0.5,  # ์ œ๋ชฉ์˜ x ์œ„์น˜ (0=์™ผ์ชฝ, 0.5=์ค‘์•™, 1=์˜ค๋ฅธ์ชฝ)
            xanchor='center',  # ์ œ๋ชฉ์˜ x ์œ„์น˜ ๊ธฐ์ค€ (center, left, right)
            y=0.95,  # ์ œ๋ชฉ์˜ y ์œ„์น˜ (0=ํ•˜๋‹จ, 1=์ƒ๋‹จ)
            yanchor='top'  # ์ œ๋ชฉ์˜ y ์œ„์น˜ ๊ธฐ์ค€ (top, middle, bottom)
        )
    )
    return fig

def search_openai_plot(dropdown_model): # openai plot ํ•จ์ˆ˜ ์ •์˜
    openai_top_model = df_openai.iat[0, df_openai.columns.get_loc('model')]
    openai_top_model = BeautifulSoup(openai_top_model, 'html.parser').get_text()

    condition1 = (df['judge_model'] != 'keval') & (df['turn'] == 1) & (df['model'] == openai_top_model)
    top1_openai_turn1 = df.loc[condition1, 'Coding':'Writing'].values.tolist()

    condition2 = (df['judge_model'] != 'keval') & (df['turn'] == 2) & (df['model'] == openai_top_model)
    top1_openai_turn2 = df.loc[condition2, 'Coding':'Writing'].values.tolist()

    condition3 = (df['judge_model'] != 'keval') & (df['turn'] == 1) & (df['model'] == dropdown_model)
    openai_turn1 = df.loc[condition3, 'Coding':'Writing'].values.tolist()

    condition4 = (df['judge_model'] != 'keval') & (df['turn'] == 2) & (df['model'] == dropdown_model)
    openai_turn2 = df.loc[condition4, 'Coding':'Writing'].values.tolist()

    category_labels = []
    category_labels.append(openai_top_model + "  /Turn 1")
    category_labels.append(openai_top_model + "  /Turn 2")
    category_labels.append(dropdown_model + "  /Turn 1")
    category_labels.append(dropdown_model + "  /Turn 2")

    fig = radar_chart(CATEGORIES, top1_openai_turn1, top1_openai_turn2, openai_turn1, openai_turn2, category_labels,"openai")
    return fig

def search_keval_plot(dropdown_model): # keval plot ํ•จ์ˆ˜ ์ •์˜
    keval_top_model = df_keval.iat[0, df_keval.columns.get_loc('model')]
    keval_top_model = BeautifulSoup(keval_top_model, 'html.parser').get_text()

    condition1 = (df['judge_model'] == 'keval') & (df['turn'] == 1) & (df['model'] == keval_top_model)
    top1_keval_turn1 = df.loc[condition1, 'Coding':'Writing'].values.tolist()

    condition2 = (df['judge_model'] == 'keval') & (df['turn'] == 2) & (df['model'] == keval_top_model)
    top1_keval_turn2 = df.loc[condition2, 'Coding':'Writing'].values.tolist()

    condition3 = (df['judge_model'] == 'keval') & (df['turn'] == 1) & (df['model'] == dropdown_model)
    keval_turn1 = df.loc[condition3, 'Coding':'Writing'].values.tolist()

    condition4 = (df['judge_model'] == 'keval') & (df['turn'] == 2) & (df['model'] == dropdown_model)
    keval_turn2 = df.loc[condition4, 'Coding':'Writing'].values.tolist()

    category_labels = []
    category_labels.append(keval_top_model + " /Turn 1")
    category_labels.append(keval_top_model + "  /Turn 2")
    category_labels.append(dropdown_model + "  /Turn 1")
    category_labels.append(dropdown_model + "  /Turn 2")

    fig = radar_chart(CATEGORIES, top1_keval_turn1, top1_keval_turn2, keval_turn1, keval_turn2, category_labels, "keval")
    return fig


# average
def plot_average():
    fig = go.Figure()
    colors = [px.colors.qualitative.Set2, px.colors.qualitative.Pastel2]
    turn_df = df_full_rs

    # gpt-4o
    fig.add_trace(go.Scatter(x=turn_df['model'], y=turn_df['Ko-Bench/openai'], mode='lines+markers',
                             name=f'gpt-4o(Average)',
                             line=dict(color=colors[0][0], dash='dash'),
                             marker=dict(symbol='x', size=10)))

    # keval
    fig.add_trace(go.Scatter(x=turn_df['model'], y=turn_df['Ko-Bench/keval'], mode='lines+markers',
                             name=f'keval(Average)',
                             line=dict(color=colors[0][1]),
                             marker=dict(symbol='circle', size=10)))

    fig.update_layout(
        title=f'Comparison of OpenAI ko_bench and keval ko_bench (Average)',
        xaxis_title='Model',
        yaxis_title='Score',
        legend_title='Metric',
        hovermode='x unified',
        template='plotly_white'
    )
    fig.update_yaxes(range=[0, 10])
    fig.update_layout(legend_traceorder="reversed")
    return fig


#gradio
with gr.Blocks(css='assets/leaderboard.css') as demo:
    gr.Markdown("")
    gr.Markdown("# ๐Ÿ† Ko-Bench Leaderboard")
    gr.Markdown("")
    gr.Markdown("#### The Ko-Bench is a leaderboard for evaluating the multi-level conversation ability and instruction-following ability of Korean Large Language Models (LLMs).")
    gr.Markdown("- MT-Bench: a set of challenging multi-turn questions. We use GPT-4 to grade the model responses.")
    gr.Markdown("- Ko-Bench/openai: a set of challenging multi-turn questions in Korean. We use GPT-4o to grade the model responses.")
    gr.Markdown("- Ko-Bench/keval: a set of challenging multi-turn questions in Korean. We use the keval model as an evaluation model.")
    gr.Markdown("")
    gr.Markdown("github : https://github.com/davidkim205/Ko-Bench")
    gr.Markdown("keval : https://huggingface.co/collections/davidkim205/k-eval-6660063dd66e21cbdcc4fbf1")
    gr.Markdown("")

    with gr.Row():
        with gr.TabItem("Ko-Bench"):
            gr.Dataframe(value=df_full_rs,
                         datatype=['html' if col == 'model' else 'markdown' for col in df_full_rs.columns])
            with gr.Row():
                with gr.TabItem("Average"):
                    gr.Plot(plot_average)
        with gr.TabItem("Openai Judgment"):
            gr.Dataframe(value=df_openai,
                         datatype=['html' if col == 'model' else 'markdown' for col in df_openai.columns])
        with gr.TabItem("Keval Judgment"):
            gr.Dataframe(value=df_keval,
                         datatype=['html' if col == 'model' else 'markdown' for col in df_keval.columns])
        with gr.TabItem("Model Detail View"):
            with gr.Blocks():
                with gr.Row():
                    dropdown = gr.Dropdown(choices=plot_models_list, label="Choose a Model")
                with gr.Row():
                    dataframe = gr.Dataframe(label="Model Detail View")
                    dropdown.change(fn=search_dataframe, inputs=dropdown, outputs=dataframe)
                with gr.Row():
                    plot_openai = gr.Plot(label="Openai Plot")
                    dropdown.change(fn=search_openai_plot, inputs=dropdown, outputs=plot_openai)
                    plot_keval = gr.Plot(label="Keval Plot")
                    dropdown.change(fn=search_keval_plot, inputs=dropdown, outputs=plot_keval)



demo.launch(share=True, server_name="0.0.0.0", debug=True)