latentblending / stable_diffusion_holder.py
davidmunechika's picture
Duplicate from lunarring/latentblending
8d783eb
# Copyright 2022 Lunar Ring. All rights reserved.
# Written by Johannes Stelzer, email [email protected] twitter @j_stelzer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
torch.backends.cudnn.benchmark = False
torch.set_grad_enabled(False)
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import warnings
import torch
from PIL import Image
import torch
from typing import Optional
from omegaconf import OmegaConf
from torch import autocast
from contextlib import nullcontext
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from einops import repeat, rearrange
from utils import interpolate_spherical
def pad_image(input_image):
pad_w, pad_h = np.max(((2, 2), np.ceil(
np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size
im_padded = Image.fromarray(
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
return im_padded
def make_batch_superres(
image,
txt,
device,
num_samples=1):
image = np.array(image.convert("RGB"))
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
batch = {
"lr": rearrange(image, 'h w c -> 1 c h w'),
"txt": num_samples * [txt],
}
batch["lr"] = repeat(batch["lr"].to(device=device),
"1 ... -> n ...", n=num_samples)
return batch
def make_noise_augmentation(model, batch, noise_level=None):
x_low = batch[model.low_scale_key]
x_low = x_low.to(memory_format=torch.contiguous_format).float()
x_aug, noise_level = model.low_scale_model(x_low, noise_level)
return x_aug, noise_level
class StableDiffusionHolder:
def __init__(self,
fp_ckpt: str = None,
fp_config: str = None,
num_inference_steps: int = 30,
height: Optional[int] = None,
width: Optional[int] = None,
device: str = None,
precision: str = 'autocast',
):
r"""
Initializes the stable diffusion holder, which contains the models and sampler.
Args:
fp_ckpt: File pointer to the .ckpt model file
fp_config: File pointer to the .yaml config file
num_inference_steps: Number of diffusion iterations. Will be overwritten by latent blending.
height: Height of the resulting image.
width: Width of the resulting image.
device: Device to run the model on.
precision: Precision to run the model on.
"""
self.seed = 42
self.guidance_scale = 5.0
if device is None:
self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
else:
self.device = device
self.precision = precision
self.init_model(fp_ckpt, fp_config)
self.f = 8 # downsampling factor, most often 8 or 16"
self.C = 4
self.ddim_eta = 0
self.num_inference_steps = num_inference_steps
if height is None and width is None:
self.init_auto_res()
else:
assert height is not None, "specify both width and height"
assert width is not None, "specify both width and height"
self.height = height
self.width = width
self.negative_prompt = [""]
def init_model(self, fp_ckpt, fp_config):
r"""Loads the models and sampler.
"""
assert os.path.isfile(fp_ckpt), f"Your model checkpoint file does not exist: {fp_ckpt}"
self.fp_ckpt = fp_ckpt
# Auto init the config?
if fp_config is None:
fn_ckpt = os.path.basename(fp_ckpt)
if 'depth' in fn_ckpt:
fp_config = 'configs/v2-midas-inference.yaml'
elif 'upscaler' in fn_ckpt:
fp_config = 'configs/x4-upscaling.yaml'
elif '512' in fn_ckpt:
fp_config = 'configs/v2-inference.yaml'
elif '768' in fn_ckpt:
fp_config = 'configs/v2-inference-v.yaml'
elif 'v1-5' in fn_ckpt:
fp_config = 'configs/v1-inference.yaml'
else:
raise ValueError("auto detect of config failed. please specify fp_config manually!")
assert os.path.isfile(fp_config), "Auto-init of the config file failed. Please specify manually."
assert os.path.isfile(fp_config), f"Your config file does not exist: {fp_config}"
config = OmegaConf.load(fp_config)
self.model = instantiate_from_config(config.model)
self.model.load_state_dict(torch.load(fp_ckpt)["state_dict"], strict=False)
self.model = self.model.to(self.device)
self.sampler = DDIMSampler(self.model)
def init_auto_res(self):
r"""Automatically set the resolution to the one used in training.
"""
if '768' in self.fp_ckpt:
self.height = 768
self.width = 768
else:
self.height = 512
self.width = 512
def set_negative_prompt(self, negative_prompt):
r"""Set the negative prompt. Currenty only one negative prompt is supported
"""
if isinstance(negative_prompt, str):
self.negative_prompt = [negative_prompt]
else:
self.negative_prompt = negative_prompt
if len(self.negative_prompt) > 1:
self.negative_prompt = [self.negative_prompt[0]]
def get_text_embedding(self, prompt):
c = self.model.get_learned_conditioning(prompt)
return c
@torch.no_grad()
def get_cond_upscaling(self, image, text_embedding, noise_level):
r"""
Initializes the conditioning for the x4 upscaling model.
"""
image = pad_image(image) # resize to integer multiple of 32
w, h = image.size
noise_level = torch.Tensor(1 * [noise_level]).to(self.sampler.model.device).long()
batch = make_batch_superres(image, txt="placeholder", device=self.device, num_samples=1)
x_augment, noise_level = make_noise_augmentation(self.model, batch, noise_level)
cond = {"c_concat": [x_augment], "c_crossattn": [text_embedding], "c_adm": noise_level}
# uncond cond
uc_cross = self.model.get_unconditional_conditioning(1, "")
uc_full = {"c_concat": [x_augment], "c_crossattn": [uc_cross], "c_adm": noise_level}
return cond, uc_full
@torch.no_grad()
def run_diffusion_standard(
self,
text_embeddings: torch.FloatTensor,
latents_start: torch.FloatTensor,
idx_start: int = 0,
list_latents_mixing=None,
mixing_coeffs=0.0,
spatial_mask=None,
return_image: Optional[bool] = False):
r"""
Diffusion standard version.
Args:
text_embeddings: torch.FloatTensor
Text embeddings used for diffusion
latents_for_injection: torch.FloatTensor or list
Latents that are used for injection
idx_start: int
Index of the diffusion process start and where the latents_for_injection are injected
mixing_coeff:
mixing coefficients for latent blending
spatial_mask:
experimental feature for enforcing pixels from list_latents_mixing
return_image: Optional[bool]
Optionally return image directly
"""
# Asserts
if type(mixing_coeffs) == float:
list_mixing_coeffs = self.num_inference_steps * [mixing_coeffs]
elif type(mixing_coeffs) == list:
assert len(mixing_coeffs) == self.num_inference_steps
list_mixing_coeffs = mixing_coeffs
else:
raise ValueError("mixing_coeffs should be float or list with len=num_inference_steps")
if np.sum(list_mixing_coeffs) > 0:
assert len(list_latents_mixing) == self.num_inference_steps
precision_scope = autocast if self.precision == "autocast" else nullcontext
with precision_scope("cuda"):
with self.model.ema_scope():
if self.guidance_scale != 1.0:
uc = self.model.get_learned_conditioning(self.negative_prompt)
else:
uc = None
self.sampler.make_schedule(ddim_num_steps=self.num_inference_steps - 1, ddim_eta=self.ddim_eta, verbose=False)
latents = latents_start.clone()
timesteps = self.sampler.ddim_timesteps
time_range = np.flip(timesteps)
total_steps = timesteps.shape[0]
# Collect latents
list_latents_out = []
for i, step in enumerate(time_range):
# Set the right starting latents
if i < idx_start:
list_latents_out.append(None)
continue
elif i == idx_start:
latents = latents_start.clone()
# Mix latents
if i > 0 and list_mixing_coeffs[i] > 0:
latents_mixtarget = list_latents_mixing[i - 1].clone()
latents = interpolate_spherical(latents, latents_mixtarget, list_mixing_coeffs[i])
if spatial_mask is not None and list_latents_mixing is not None:
latents = interpolate_spherical(latents, list_latents_mixing[i - 1], 1 - spatial_mask)
index = total_steps - i - 1
ts = torch.full((1,), step, device=self.device, dtype=torch.long)
outs = self.sampler.p_sample_ddim(latents, text_embeddings, ts, index=index, use_original_steps=False,
quantize_denoised=False, temperature=1.0,
noise_dropout=0.0, score_corrector=None,
corrector_kwargs=None,
unconditional_guidance_scale=self.guidance_scale,
unconditional_conditioning=uc,
dynamic_threshold=None)
latents, pred_x0 = outs
list_latents_out.append(latents.clone())
if return_image:
return self.latent2image(latents)
else:
return list_latents_out
@torch.no_grad()
def run_diffusion_upscaling(
self,
cond,
uc_full,
latents_start: torch.FloatTensor,
idx_start: int = -1,
list_latents_mixing: list = None,
mixing_coeffs: float = 0.0,
return_image: Optional[bool] = False):
r"""
Diffusion upscaling version.
"""
# Asserts
if type(mixing_coeffs) == float:
list_mixing_coeffs = self.num_inference_steps * [mixing_coeffs]
elif type(mixing_coeffs) == list:
assert len(mixing_coeffs) == self.num_inference_steps
list_mixing_coeffs = mixing_coeffs
else:
raise ValueError("mixing_coeffs should be float or list with len=num_inference_steps")
if np.sum(list_mixing_coeffs) > 0:
assert len(list_latents_mixing) == self.num_inference_steps
precision_scope = autocast if self.precision == "autocast" else nullcontext
h = uc_full['c_concat'][0].shape[2]
w = uc_full['c_concat'][0].shape[3]
with precision_scope("cuda"):
with self.model.ema_scope():
shape_latents = [self.model.channels, h, w]
self.sampler.make_schedule(ddim_num_steps=self.num_inference_steps - 1, ddim_eta=self.ddim_eta, verbose=False)
C, H, W = shape_latents
size = (1, C, H, W)
b = size[0]
latents = latents_start.clone()
timesteps = self.sampler.ddim_timesteps
time_range = np.flip(timesteps)
total_steps = timesteps.shape[0]
# collect latents
list_latents_out = []
for i, step in enumerate(time_range):
# Set the right starting latents
if i < idx_start:
list_latents_out.append(None)
continue
elif i == idx_start:
latents = latents_start.clone()
# Mix the latents.
if i > 0 and list_mixing_coeffs[i] > 0:
latents_mixtarget = list_latents_mixing[i - 1].clone()
latents = interpolate_spherical(latents, latents_mixtarget, list_mixing_coeffs[i])
# print(f"diffusion iter {i}")
index = total_steps - i - 1
ts = torch.full((b,), step, device=self.device, dtype=torch.long)
outs = self.sampler.p_sample_ddim(latents, cond, ts, index=index, use_original_steps=False,
quantize_denoised=False, temperature=1.0,
noise_dropout=0.0, score_corrector=None,
corrector_kwargs=None,
unconditional_guidance_scale=self.guidance_scale,
unconditional_conditioning=uc_full,
dynamic_threshold=None)
latents, pred_x0 = outs
list_latents_out.append(latents.clone())
if return_image:
return self.latent2image(latents)
else:
return list_latents_out
@torch.no_grad()
def latent2image(
self,
latents: torch.FloatTensor):
r"""
Returns an image provided a latent representation from diffusion.
Args:
latents: torch.FloatTensor
Result of the diffusion process.
"""
x_sample = self.model.decode_first_stage(latents)
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255 * x_sample[0, :, :].permute([1, 2, 0]).cpu().numpy()
image = x_sample.astype(np.uint8)
return image