Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
from pathlib import Path | |
abs_path = Path(__file__).parent.absolute() | |
df = pd.read_json(str(abs_path / "assets/leaderboard_data.json")) | |
invisible_df = df.copy() | |
COLS = [ | |
"T", | |
"Model", | |
"Average ⬆️", | |
"ARC", | |
"HellaSwag", | |
"MMLU", | |
"TruthfulQA", | |
"Winogrande", | |
"GSM8K", | |
"Type", | |
"Architecture", | |
"Precision", | |
"Merged", | |
"Hub License", | |
"#Params (B)", | |
"Hub ❤️", | |
"Model sha", | |
"model_name_for_query", | |
] | |
ON_LOAD_COLS = [ | |
"T", | |
"Model", | |
"Average ⬆️", | |
"ARC", | |
"HellaSwag", | |
"MMLU", | |
"TruthfulQA", | |
"Winogrande", | |
"GSM8K", | |
"model_name_for_query", | |
] | |
TYPES = [ | |
"str", | |
"markdown", | |
"number", | |
"number", | |
"number", | |
"number", | |
"number", | |
"number", | |
"number", | |
"str", | |
"str", | |
"str", | |
"str", | |
"bool", | |
"str", | |
"number", | |
"number", | |
"bool", | |
"str", | |
"bool", | |
"bool", | |
"str", | |
] | |
NUMERIC_INTERVALS = { | |
"?": pd.Interval(-1, 0, closed="right"), | |
"~1.5": pd.Interval(0, 2, closed="right"), | |
"~3": pd.Interval(2, 4, closed="right"), | |
"~7": pd.Interval(4, 9, closed="right"), | |
"~13": pd.Interval(9, 20, closed="right"), | |
"~35": pd.Interval(20, 45, closed="right"), | |
"~60": pd.Interval(45, 70, closed="right"), | |
"70+": pd.Interval(70, 10000, closed="right"), | |
} | |
MODEL_TYPE = [str(s) for s in df["T"].unique()] | |
Precision = [str(s) for s in df["Precision"].unique()] | |
# Searching and filtering | |
def update_table( | |
hidden_df: pd.DataFrame, | |
columns: list, | |
type_query: list, | |
precision_query: str, | |
size_query: list, | |
query: str, | |
): | |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query) # type: ignore | |
filtered_df = filter_queries(query, filtered_df) | |
df = select_columns(filtered_df, columns) | |
return df | |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
return df[(df["model_name_for_query"].str.contains(query, case=False))] # type: ignore | |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
# We use COLS to maintain sorting | |
filtered_df = df[[c for c in COLS if c in df.columns and c in columns]] | |
return filtered_df # type: ignore | |
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: | |
final_df = [] | |
if query != "": | |
queries = [q.strip() for q in query.split(";")] | |
for _q in queries: | |
_q = _q.strip() | |
if _q != "": | |
temp_filtered_df = search_table(filtered_df, _q) | |
if len(temp_filtered_df) > 0: | |
final_df.append(temp_filtered_df) | |
if len(final_df) > 0: | |
filtered_df = pd.concat(final_df) | |
filtered_df = filtered_df.drop_duplicates( # type: ignore | |
subset=["Model", "Precision", "Model sha"] | |
) | |
return filtered_df | |
def filter_models( | |
df: pd.DataFrame, | |
type_query: list, | |
size_query: list, | |
precision_query: list, | |
) -> pd.DataFrame: | |
# Show all models | |
filtered_df = df | |
type_emoji = [t[0] for t in type_query] | |
filtered_df = filtered_df.loc[df["T"].isin(type_emoji)] | |
filtered_df = filtered_df.loc[df["Precision"].isin(precision_query + ["None"])] | |
numeric_interval = pd.IntervalIndex( | |
sorted([NUMERIC_INTERVALS[s] for s in size_query]) # type: ignore | |
) | |
params_column = pd.to_numeric(df["#Params (B)"], errors="coerce") | |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) # type: ignore | |
filtered_df = filtered_df.loc[mask] | |
return filtered_df | |
demo = gr.Blocks(css=str(abs_path / "assets/leaderboard_data.json")) | |
with demo: | |
gr.Markdown("""Test Space of the LLM Leaderboard""", elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
with gr.Row(): | |
shown_columns = gr.CheckboxGroup( | |
choices=COLS, | |
value=ON_LOAD_COLS, | |
label="Select columns to show", | |
elem_id="column-select", | |
interactive=True, | |
) | |
with gr.Column(min_width=320): | |
filter_columns_type = gr.CheckboxGroup( | |
label="Model types", | |
choices=MODEL_TYPE, | |
value=MODEL_TYPE, | |
interactive=True, | |
elem_id="filter-columns-type", | |
) | |
filter_columns_precision = gr.CheckboxGroup( | |
label="Precision", | |
choices=Precision, | |
value=Precision, | |
interactive=True, | |
elem_id="filter-columns-precision", | |
) | |
filter_columns_size = gr.CheckboxGroup( | |
label="Model sizes (in billions of parameters)", | |
choices=list(NUMERIC_INTERVALS.keys()), | |
value=list(NUMERIC_INTERVALS.keys()), | |
interactive=True, | |
elem_id="filter-columns-size", | |
) | |
leaderboard_table = gr.components.Dataframe( | |
value=df[ON_LOAD_COLS], | |
headers=ON_LOAD_COLS, | |
datatype=TYPES, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
column_widths=["2%", "33%"], | |
) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
value=invisible_df[COLS], | |
headers=COLS, | |
datatype=TYPES, | |
visible=False, | |
) | |
search_bar.submit( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
filter_columns_type, | |
filter_columns_precision, | |
filter_columns_size, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
for selector in [ | |
shown_columns, | |
filter_columns_type, | |
filter_columns_precision, | |
filter_columns_size, | |
]: | |
selector.change( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
filter_columns_type, | |
filter_columns_precision, | |
filter_columns_size, | |
search_bar, | |
], | |
leaderboard_table, | |
queue=True, | |
) | |
if __name__ == "__main__": | |
demo.queue(default_concurrency_limit=40).launch() | |