File size: 3,873 Bytes
6c4dee3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import gradio as gr
import numpy as np
import random

import spaces
from models import TVARPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "michellemoorre/var-test"


pipe = TVARPipeline.from_pretrained(model_repo_id, device=device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


@spaces.GPU(duration=65)
def infer(
    prompt,
    negative_prompt="",
    seed=42,
    randomize_seed=False,
    guidance_scale=4.0,
    top_k=450,
    top_p=0.95,
    re=False,
    re_max_depth=10,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    image = pipe(
        prompt=prompt,
        null_prompt=negative_prompt,
        cfg=guidance_scale,
        top_p=top_p,
        top_k=top_k,
        re=re,
        g_seed=seed,
    )[0]

    return image, seed

# TODO: add examples from preview
examples = [
        "A capybara wearing a suit holding a sign that reads Hello World",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # [OpenTVAR](https://huggingface.co/stabilityai/stable-diffusion-3.5-large)")
        gr.Markdown("[Learn more](https://stability.ai/news/introducing-stable-diffusion-3-5) about the OpenTVAR.")
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=7.5,
                    step=0.1,
                    value=4.5,
                )
            with gr.Row():
                top_k = gr.Slider(
                    label="Sampling top k",
                    minimum=1,
                    maximum=1000,
                    step=10,
                    value=450,
                )
                top_p = gr.Slider(
                    label="Sampling top p",
                    minimum=0.0,
                    maximum=1.,
                    step=0.05,
                    value=0.95,
                )
            with gr.Row():
                re = gr.Checkbox(label="Rejection Sampling", value=False)
                re_max_depth = gr.Slider(
                    label="Rejection Sampling Depth",
                    minimum=0,
                    maximum=20,
                    step=1,
                    value=10,
                )

        gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True)# cache_mode="lazy")
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            guidance_scale,
            top_k,
            top_p,
            re,
            re_max_depth,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()