Spaces:
Sleeping
Sleeping
File size: 5,312 Bytes
6c4dee3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
"""
Helpers for distributed training.
"""
import os
import socket
import torch as th
import torch.distributed as dist
from torch.distributed import barrier, is_initialized, broadcast
# Change this to reflect your cluster layout.
# The GPU for a given rank is (rank % GPUS_PER_NODE).
GPUS_PER_NODE = 8
SETUP_RETRY_COUNT = 3
import datetime
import os
import socket
from contextlib import closing
def find_free_port() -> int:
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
s.bind(("", 0))
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
return s.getsockname()[1]
def check_if_port_open(port: int) -> bool:
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
try:
s.bind(("", port))
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
return True
except OSError:
return False
def initialized():
return dist.is_initialized()
def finalize():
if dist.is_initialized():
dist.destroy_process_group()
def initialize():
is_mpirun = not (
"RANK" in os.environ
and "WORLD_SIZE" in os.environ
and "MASTER_ADDR" in os.environ
and "MASTER_PORT" in os.environ
)
if is_mpirun:
from mpi4py import MPI
import subprocess
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
world_size = comm.Get_size()
master_addr = None
master_port = None
if rank == 0:
hostname_cmd = ["hostname -I"]
result = subprocess.check_output(hostname_cmd, shell=True)
master_addr = result.decode("utf-8").split()[0]
base_port = os.environ.get(
"MASTER_PORT", "29500"
) # TORCH_DISTRIBUTED_DEFAULT_PORT
if check_if_port_open(int(base_port)):
master_port = base_port
else:
master_port = find_free_port()
master_addr = comm.bcast(master_addr, root=0)
master_port = comm.bcast(master_port, root=0)
# Determine local rank by assuming hostnames are unique
proc_name = MPI.Get_processor_name()
all_procs = comm.allgather(proc_name)
local_rank = sum([i == proc_name for i in all_procs[:rank]])
uniq_proc_names = set(all_procs)
host_rank = sorted(uniq_proc_names).index(proc_name)
os.environ["LOCAL_RANK"] = str(local_rank)
os.environ["HOST_RANK"] = str(host_rank)
os.environ["NUM_HOSTS"] = str(len(uniq_proc_names))
os.environ["RANK"] = str(rank)
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["MASTER_ADDR"] = master_addr
os.environ["MASTER_PORT"] = str(master_port)
os.environ["OMP_NUM_THREADS"] = "1"
# Initialize torch distributed
backend = "gloo" if not th.cuda.is_available() else "nccl"
dist.init_process_group(backend=backend, timeout=datetime.timedelta(0, 3600))
th.cuda.set_device(int(os.environ.get('LOCAL_RANK', '0')))
if is_mpirun and dist.get_rank() == 0:
print("Distributed setup")
print("LOCAL_RANK", os.environ['LOCAL_RANK'])
print("HOST_RANK", os.environ['HOST_RANK'])
print("NUM_HOSTS", os.environ['NUM_HOSTS'])
print("WORLD_SIZE", os.environ['WORLD_SIZE'])
def local_host_gather(data):
from mpi4py import MPI
comm = MPI.COMM_WORLD
host_rank = os.environ["HOST_RANK"]
all_data = comm.allgather((host_rank, data))
return [d[1] for d in all_data if d[0] == host_rank]
def in_distributed_mode():
return dist is not None
def is_master():
return get_rank() == 0
def is_local_master():
return get_local_rank() == 0
def get_rank():
return dist.get_rank() if in_distributed_mode() else 0
def get_local_rank():
return int(os.environ["LOCAL_RANK"])
def worker_host_idx():
return int(os.environ["HOST_RANK"])
def num_hosts():
return int(os.environ['NUM_HOSTS'])
def get_world_size():
return dist.get_world_size() if in_distributed_mode() else 1
def gpu_visible_device_list():
return str(dist.get_rank()) if in_distributed_mode() else None
def get_device():
"""
Get the device to use for torch.distributed.
"""
if th.cuda.is_available():
return th.device("cuda")
return th.device("cpu")
def sync_params(params):
"""
Synchronize a sequence of Tensors across ranks from rank 0.
"""
for p in params:
with th.no_grad():
dist.broadcast(p, 0)
def print0(*args, **kwargs):
if get_rank() == 0:
print(*args, **kwargs)
def allreduce(t: th.Tensor, async_op=False):
if dist.is_initialized():
if not t.is_cuda:
cu = t.detach().cuda()
ret = dist.all_reduce(cu, async_op=async_op)
t.copy_(cu.cpu())
else:
ret = dist.all_reduce(t, async_op=async_op)
return ret
return None
def allgather(t: th.Tensor, cat=True):
if dist.is_initialized():
if not t.is_cuda:
t = t.cuda()
ls = [th.empty_like(t) for _ in range(get_world_size())]
dist.all_gather(ls, t)
else:
ls = [t]
if cat:
ls = th.cat(ls, dim=0)
return ls
|