File size: 8,716 Bytes
6c4dee3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412b3d8
6c4dee3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412b3d8
6c4dee3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import torch
from torchvision.transforms import ToPILImage

from models.vqvae import VQVAEHF
from models.clip import FrozenCLIPEmbedder
from models.var import TVARHF, sample_with_top_k_top_p_, gumbel_softmax_with_rng


class TVARPipeline:
    vae_path = "michellemoorre/vae-test"
    text_encoder_path = "openai/clip-vit-large-patch14"
    text_encoder_2_path = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"

    def __init__(self, var, vae, text_encoder, text_encoder_2, device):
        self.var = var
        self.vae = vae
        self.text_encoder = text_encoder
        self.text_encoder_2 = text_encoder_2

        self.var.eval()
        self.vae.eval()

        self.device = device


    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, device="cuda"):
        var = TVARHF.from_pretrained(pretrained_model_name_or_path).to(device)
        vae = VQVAEHF.from_pretrained(cls.vae_path).to(device)
        text_encoder = FrozenCLIPEmbedder(cls.text_encoder_path, device=device)
        text_encoder_2 = FrozenCLIPEmbedder(cls.text_encoder_2_path, device=device)

        return cls(var, vae, text_encoder, text_encoder_2, device)


    @staticmethod
    def to_image(tensor):
        return [ToPILImage()(
            (255 * img.cpu().detach()).to(torch.uint8))
        for img in tensor]


    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        null_prompt: str = "",
        encode_null: bool = True,
    ):
        prompt = [prompt] if isinstance(prompt, str) else prompt
        encodings = [
            self.text_encoder.encode(prompt),
            self.text_encoder_2.encode(prompt),
        ]
        prompt_embeds = torch.concat(
            [encoding.last_hidden_state for encoding in encodings], dim=-1
        )
        pooled_prompt_embeds = encodings[-1].pooler_output
        attn_bias = encodings[-1].attn_bias

        if encode_null:
            null_prompt = [null_prompt] if isinstance(null_prompt, str) else prompt
            null_encodings = [
                self.text_encoder.encode(null_prompt),
                self.text_encoder_2.encode(null_prompt),
            ]
            null_prompt_embeds = torch.concat(
                [encoding.last_hidden_state for encoding in encodings], dim=-1
            )
            null_pooled_prompt_embeds = null_encodings[-1].pooler_output
            null_attn_bias = null_encodings[-1].attn_bias

            B, L, hidden_dim = prompt_embeds.shape
            pooled_dim = pooled_prompt_embeds.shape[1]

            null_prompt_embeds = null_prompt_embeds[:, :L].expand(B, L, hidden_dim).to(prompt_embeds.device)
            null_pooled_prompt_embeds = null_pooled_prompt_embeds.expand(B, pooled_dim).to(pooled_prompt_embeds.device)
            null_attn_bias = null_attn_bias[:, :L].expand(B, L).to(attn_bias.device)

            prompt_embeds = torch.cat([prompt_embeds, null_prompt_embeds], dim=0)
            pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, null_pooled_prompt_embeds], dim=0)
            attn_bias = torch.cat([attn_bias, null_attn_bias], dim=0)

        return prompt_embeds, pooled_prompt_embeds, attn_bias

    @torch.inference_mode()
    def __call__(
        self,
        prompt = None,
        null_prompt = "",
        g_seed: Optional[int] = None,
        cfg=4.0,
        top_k=450,
        top_p=0.95,
        more_smooth=False,
        re=False,
        re_max_depth=10,
        re_start_iter=2,
        return_pil=True,
        encoded_prompt = None,
        encoded_null_prompt = None,
    ) -> torch.Tensor:  # returns reconstructed image (B, 3, H, W) in [0, 1]
        """
        only used for inference, on autoregressive mode
        :param B: batch size
        :param label_B: imagenet label; if None, randomly sampled
        :param g_seed: random seed
        :param cfg: classifier-free guidance ratio
        :param top_k: top-k sampling
        :param top_p: top-p sampling
        :param more_smooth: smoothing the pred using gumbel softmax; only used in visualization, not used in FID/IS benchmarking
        :return: if returns_vemb: list of embedding h_BChw := vae_embed(idx_Bl), else: list of idx_Bl
        """
        assert not self.var.training
        var = self.var
        vae = self.vae
        vae_quant = self.vae.quantize
        if g_seed is None:
            rng = None
        else:
            var.rng.manual_seed(g_seed)
            rng = var.rng

        if encoded_prompt is not None:
            assert encoded_null_prompt is not None
            context, cond_vector, context_attn_bias = self.var.parse_batch(
                encoded_prompt,
                encoded_null_prompt,
            )
        else:
            context, cond_vector, context_attn_bias = self.encode_prompt(prompt, null_prompt)

        B = context.shape[0] // 2

        cond_vector = var.text_pooler(cond_vector)

        sos = cond_BD = cond_vector

        lvl_pos = var.lvl_embed(var.lvl_1L)
        if not var.rope:
            lvl_pos += var.pos_1LC
        next_token_map = (
            sos.unsqueeze(1)
            + var.pos_start.expand(2 * B, var.first_l, -1)
            + lvl_pos[:, : var.first_l]
        )
        cur_L = 0
        f_hat = sos.new_zeros(B, var.Cvae, var.patch_nums[-1], var.patch_nums[-1])

        for b in var.blocks:
            b.attn.kv_caching(True)
            b.cross_attn.kv_caching(True)

        for si, pn in enumerate(var.patch_nums):  # si: i-th segment
            ratio = si / var.num_stages_minus_1
            cond_BD_or_gss = var.shared_ada_lin(cond_BD)
            x_BLC = next_token_map

            if var.rope:
                freqs_cis = var.freqs_cis[:, cur_L : cur_L + pn * pn]
            else:
                freqs_cis = var.freqs_cis

            for block in var.blocks:
                x_BLC = block(
                    x=x_BLC,
                    cond_BD=cond_BD_or_gss,
                    attn_bias=None,
                    context=context,
                    context_attn_bias=context_attn_bias,
                    freqs_cis=freqs_cis,
                )
            cur_L += pn * pn

            logits_BlV = var.get_logits(x_BLC, cond_BD)

            t = cfg * ratio
            logits_BlV = (1 + t) * logits_BlV[:B] - t * logits_BlV[B:]

            idx_Bl = sample_with_top_k_top_p_(
                logits_BlV, rng=rng, top_k=top_k, top_p=top_p, num_samples=1
            )[:, :, 0]
            if re and si >= re_start_iter:
                selected_logits = torch.gather(logits_BlV, -1, idx_Bl.unsqueeze(-1))[:, :, 0]
                mx = selected_logits.sum(dim=-1)[:, None]
                for _ in range(re_max_depth):
                    new_idx_Bl = sample_with_top_k_top_p_(
                        logits_BlV, rng=rng, top_k=top_k, top_p=top_p, num_samples=1
                    )[:, :, 0]
                    selected_logits = torch.gather(logits_BlV, -1, new_idx_Bl.unsqueeze(-1))[:, :, 0]

                    new_mx = selected_logits.sum(dim=-1)[:, None]
                    idx_Bl = idx_Bl * (mx >= new_mx) + new_idx_Bl * (mx < new_mx)
                    mx = mx * (mx >= new_mx) + new_mx * (mx < new_mx)
            if not more_smooth:  # this is the default case
                h_BChw = vae_quant.embedding(idx_Bl)  # B, l, Cvae
            else:  # not used when evaluating FID/IS/Precision/Recall
                gum_t = max(0.27 * (1 - ratio * 0.95), 0.005)  # refer to mask-git
                h_BChw = gumbel_softmax_with_rng(
                    logits_BlV.mul(1 + ratio), tau=gum_t, hard=False, dim=-1, rng=rng
                ) @ vae_quant.embedding.weight.unsqueeze(0)

            h_BChw = h_BChw.transpose_(1, 2).reshape(B, var.Cvae, pn, pn)
            f_hat, next_token_map = vae_quant.get_next_autoregressive_input(
                    si, len(var.patch_nums), f_hat, h_BChw
            )
            if si != var.num_stages_minus_1:  # prepare for next stage
                next_token_map = next_token_map.view(B, var.Cvae, -1).transpose(1, 2)
                next_token_map = (
                    var.word_embed(next_token_map)
                    + lvl_pos[:, cur_L : cur_L + var.patch_nums[si + 1] ** 2]
                )
                next_token_map = next_token_map.repeat(
                    2, 1, 1
                )  # double the batch sizes due to CFG

        for b in var.blocks:
            b.attn.kv_caching(False)
            b.cross_attn.kv_caching(False)

        # de-normalize, from [-1, 1] to [0, 1]
        img = vae.fhat_to_img(f_hat).add(1).mul(0.5)
        if return_pil:
            img = self.to_image(img)
        return img