Spaces:
Sleeping
Sleeping
import torch | |
def init_t_xy(end_x: int, end_y: int): | |
t = torch.arange(end_x * end_y, dtype=torch.float32) | |
t_x = (t % end_x).float() | |
t_y = torch.div(t, end_x, rounding_mode="floor").float() | |
return t_x, t_y | |
def compute_axial_cis( | |
dim: int, end_x: int, end_y: int, theta: float = 100.0, norm_coeff: int = 1 | |
): | |
freqs_x = ( | |
1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) | |
* norm_coeff | |
) | |
freqs_y = ( | |
1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) | |
* norm_coeff | |
) | |
t_x, t_y = init_t_xy(end_x, end_y) | |
freqs_x = torch.outer(t_x, freqs_x) | |
freqs_y = torch.outer(t_y, freqs_y) | |
freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x) | |
freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y) | |
return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1) | |
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): | |
ndim = x.ndim | |
assert 0 <= 1 < ndim | |
freqs_cis = freqs_cis[:, x.shape[1], ...] | |
if freqs_cis.shape == (x.shape[-2], x.shape[-1]): | |
shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)] | |
elif freqs_cis.shape == (x.shape[-3], x.shape[-2], x.shape[-1]): | |
shape = [d if i >= ndim - 3 else 1 for i, d in enumerate(x.shape)] | |
return freqs_cis.view(*shape) | |
def apply_rotary_emb(x_in: torch.Tensor, freqs_cis: torch.Tensor): | |
with torch.cuda.amp.autocast(enabled=False): | |
x = torch.view_as_complex(x_in.float().reshape(*x_in.shape[:-1], -1, 2)) | |
# freqs_cis = reshape_for_broadcast(freqs_cis, x).to(x_in.device) | |
freqs_cis = freqs_cis[None, :, : x.shape[2], ...].to(x_in.device) | |
x_out = torch.view_as_real(x * freqs_cis).flatten(3) | |
return x_out.type_as(x_in) | |