Spaces:
Sleeping
Sleeping
import math | |
import warnings | |
import torch | |
import torch.nn.functional as F | |
from einops import rearrange | |
from torch import nn | |
from torch.nn.functional import scaled_dot_product_attention # q, k, v: BHLc | |
from models.helpers import DropPath | |
from models.rope import apply_rotary_emb | |
try: | |
from flash_attn.ops.fused_dense import fused_mlp_func | |
except ImportError: | |
fused_mlp_func = None | |
# this file only provides the 4 blocks used in VAR transformer | |
__all__ = ["FFN", "AdaLNSelfCrossAttn", "AdaLNBeforeHead"] | |
try: | |
from apex.normalization import FusedRMSNorm as RMSNorm | |
except ImportError: | |
warnings.warn("Cannot import apex RMSNorm, switch to vanilla implementation") | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, dim: int, eps: float = 1e-6): | |
""" | |
Initialize the RMSNorm normalization layer. | |
Args: | |
dim (int): The dimension of the input tensor. | |
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. | |
Attributes: | |
eps (float): A small value added to the denominator for numerical stability. | |
weight (nn.Parameter): Learnable scaling parameter. | |
""" | |
super().__init__() | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def _norm(self, x): | |
""" | |
Apply the RMSNorm normalization to the input tensor. | |
Args: | |
x (torch.Tensor): The input tensor. | |
Returns: | |
torch.Tensor: The normalized tensor. | |
""" | |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
def forward(self, x): | |
""" | |
Forward pass through the RMSNorm layer. | |
Args: | |
x (torch.Tensor): The input tensor. | |
Returns: | |
torch.Tensor: The output tensor after applying RMSNorm. | |
""" | |
output = self._norm(x.float()).type_as(x) | |
return output * self.weight | |
class FFN(nn.Module): | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
drop=0.0, | |
fused_if_available=True, | |
): | |
super().__init__() | |
self.fused_mlp_func = fused_mlp_func if fused_if_available else None | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = nn.GELU(approximate="tanh") | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop, inplace=True) if drop > 0 else nn.Identity() | |
def forward(self, x): | |
if self.fused_mlp_func is not None: | |
return self.drop( | |
self.fused_mlp_func( | |
x=x, | |
weight1=self.fc1.weight, | |
weight2=self.fc2.weight, | |
bias1=self.fc1.bias, | |
bias2=self.fc2.bias, | |
activation="gelu_approx", | |
save_pre_act=self.training, | |
return_residual=False, | |
checkpoint_lvl=0, | |
heuristic=0, | |
process_group=None, | |
) | |
) | |
else: | |
return self.drop(self.fc2(self.act(self.fc1(x)))) | |
def extra_repr(self) -> str: | |
return f"fused_mlp_func={self.fused_mlp_func is not None}" | |
class SwiGLUFFN(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
ff_mult: float = 8 / 3, | |
): | |
""" | |
Initialize the FeedForward module. | |
Args: | |
dim (int): Input dimension. | |
ff_mult (float, optional): Custom multiplier for hidden dimension. Defaults to 4. | |
""" | |
super().__init__() | |
hidden_dim = int(dim * ff_mult) | |
self.up_proj = nn.Linear(dim, hidden_dim, bias=False) | |
self.down_proj = nn.Linear(hidden_dim, dim, bias=False) | |
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False) | |
self.fused_mlp_func = None | |
self._init() | |
def _init(self): | |
for module in self.modules(): | |
if isinstance(module, nn.Linear): | |
nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
# @torch.compile | |
def _forward_silu_gating(self, x_gate: torch.Tensor, x_up: torch.Tensor): | |
return F.silu(x_gate) * x_up | |
def forward(self, x: torch.Tensor): | |
return self.down_proj( | |
self._forward_silu_gating(self.gate_proj(x), self.up_proj(x)) | |
) | |
def extra_repr(self) -> str: | |
return f"fused_mlp_func={self.fused_mlp_func is not None}" | |
class CrossAttention(nn.Module): | |
def __init__( | |
self, | |
embed_dim: int = 768, | |
context_dim: int = 2048, | |
num_heads: int = 12, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
qk_norm: bool = False, | |
): | |
super().__init__() | |
assert embed_dim % num_heads == 0 | |
assert attn_drop == 0.0 | |
self.num_heads, self.head_dim = ( | |
num_heads, | |
embed_dim // num_heads, | |
) | |
self.qk_norm = qk_norm | |
self.scale = 1 / math.sqrt(self.head_dim) | |
self.q_norm = nn.LayerNorm(embed_dim, eps=1e-6) | |
self.k_norm = nn.LayerNorm(embed_dim, eps=1e-6) | |
self.to_q = nn.Linear(embed_dim, embed_dim, bias=True) | |
self.to_kv = nn.Linear(context_dim, embed_dim * 2, bias=True) | |
self.proj = nn.Linear(embed_dim, embed_dim) | |
self.proj_drop = ( | |
nn.Dropout(proj_drop, inplace=True) if proj_drop > 0 else nn.Identity() | |
) | |
self.attn_drop = attn_drop | |
# only used during inference | |
self.caching, self.cached_k, self.cached_v = False, None, None | |
def kv_caching(self, enable: bool): | |
self.caching, self.cached_k, self.cached_v = enable, None, None | |
def forward(self, x, context, context_attn_bias=None, freqs_cis=None): | |
B, L, C = x.shape | |
context_B, context_L, context_C = context.shape | |
assert B == context_B | |
q = self.to_q(x).view(B, L, -1) # BLD , self.num_heads, self.head_dim) | |
if self.qk_norm: | |
q = self.q_norm(q) | |
q = q.view(B, L, self.num_heads, self.head_dim) | |
q = q.permute(0, 2, 1, 3) # BHLc | |
if self.cached_k is None: | |
# not using caches or first scale inference | |
kv = self.to_kv(context).view(B, context_L, 2, -1) # qkv: BL3D | |
k, v = kv.permute(2, 0, 1, 3).unbind(dim=0) # q or k or v: BLHD | |
if self.qk_norm: | |
k = self.k_norm(k) | |
k = k.view(B, context_L, self.num_heads, self.head_dim) | |
k = k.permute(0, 2, 1, 3) # BHLc | |
v = v.view(B, context_L, self.num_heads, self.head_dim) | |
v = v.permute(0, 2, 1, 3) # BHLc | |
if self.caching: | |
self.cached_k = k | |
self.cached_v = v | |
else: | |
k = self.cached_k | |
v = self.cached_v | |
if context_attn_bias is not None: | |
context_attn_bias = rearrange(context_attn_bias, "b j -> b 1 1 j") | |
dropout_p = self.attn_drop if self.training else 0.0 | |
out = ( | |
scaled_dot_product_attention( | |
query=q, | |
key=k, | |
value=v, | |
scale=self.scale, | |
attn_mask=context_attn_bias, | |
dropout_p=dropout_p, | |
) | |
.transpose(1, 2) | |
.reshape(B, L, C) | |
) | |
return self.proj_drop(self.proj(out)) | |
class SelfAttention(nn.Module): | |
def __init__( | |
self, | |
block_idx: int, | |
embed_dim: int = 768, | |
num_heads: int = 12, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
qk_norm: bool = False, | |
): | |
super().__init__() | |
assert embed_dim % num_heads == 0 | |
self.block_idx, self.num_heads, self.head_dim = ( | |
block_idx, | |
num_heads, | |
embed_dim // num_heads, | |
) | |
self.qk_norm = qk_norm | |
self.scale = 1 / math.sqrt(self.head_dim) | |
self.q_norm = nn.LayerNorm(embed_dim, eps=1e-6) | |
self.k_norm = nn.LayerNorm(embed_dim, eps=1e-6) | |
self.to_qkv = nn.Linear(embed_dim, embed_dim * 3, bias=True) | |
self.proj = nn.Linear(embed_dim, embed_dim) | |
self.proj_drop = ( | |
nn.Dropout(proj_drop, inplace=True) if proj_drop > 0 else nn.Identity() | |
) | |
self.attn_drop = attn_drop | |
# only used during inference | |
self.caching, self.cached_k, self.cached_v = False, None, None | |
def kv_caching(self, enable: bool): | |
self.caching, self.cached_k, self.cached_v = enable, None, None | |
# NOTE: attn_bias is None during inference because kv cache is enabled | |
def forward(self, x, attn_bias, freqs_cis: torch.Tensor = None): | |
B, L, C = x.shape | |
qkv = self.to_qkv(x).view(B, L, 3, -1) | |
q, k, v = qkv.permute(2, 0, 1, 3).unbind(dim=0) # q or k or v: BLD | |
if self.qk_norm: | |
q = self.q_norm(q) | |
k = self.k_norm(k) | |
q = q.view(B, L, self.num_heads, self.head_dim) | |
q = q.permute(0, 2, 1, 3) # BHLc | |
k = k.view(B, L, self.num_heads, self.head_dim) | |
k = k.permute(0, 2, 1, 3) # BHLc | |
v = v.view(B, L, self.num_heads, self.head_dim) | |
v = v.permute(0, 2, 1, 3) # BHLc | |
dim_cat = 2 | |
if freqs_cis is not None: | |
q = apply_rotary_emb(q, freqs_cis=freqs_cis) | |
k = apply_rotary_emb(k, freqs_cis=freqs_cis) | |
if self.caching: | |
if self.cached_k is None: | |
self.cached_k = k | |
self.cached_v = v | |
else: | |
k = self.cached_k = torch.cat((self.cached_k, k), dim=dim_cat) | |
v = self.cached_v = torch.cat((self.cached_v, v), dim=dim_cat) | |
dropout_p = self.attn_drop if self.training else 0.0 | |
out = ( | |
scaled_dot_product_attention( | |
query=q, | |
key=k, | |
value=v, | |
scale=self.scale, | |
attn_mask=attn_bias, | |
dropout_p=dropout_p, | |
) | |
.transpose(1, 2) | |
.reshape(B, L, C) | |
) | |
return self.proj_drop(self.proj(out)) | |
def extra_repr(self) -> str: | |
return f"attn_l2_norm={self.qk_norm}" | |
class AdaLNSelfCrossAttn(nn.Module): | |
def __init__( | |
self, | |
block_idx, | |
last_drop_p, | |
embed_dim, | |
cond_dim, | |
shared_aln: bool, | |
num_heads, | |
mlp_ratio=4.0, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
qk_norm=False, | |
context_dim=None, | |
use_swiglu_ffn=False, | |
norm_eps=1e-6, | |
): | |
super().__init__() | |
assert attn_drop == 0.0 | |
assert qk_norm | |
self.block_idx, self.last_drop_p, self.C = block_idx, last_drop_p, embed_dim | |
self.C, self.D = embed_dim, cond_dim | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.attn = SelfAttention( | |
block_idx=block_idx, | |
embed_dim=embed_dim, | |
num_heads=num_heads, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
qk_norm=qk_norm, | |
) | |
if context_dim: | |
self.cross_attn = CrossAttention( | |
embed_dim=embed_dim, | |
context_dim=context_dim, | |
num_heads=num_heads, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
qk_norm=qk_norm, | |
) | |
else: | |
self.cross_attn = None | |
if use_swiglu_ffn: | |
self.ffn = SwiGLUFFN(dim=embed_dim) | |
else: | |
self.ffn = FFN( | |
in_features=embed_dim, | |
hidden_features=round(embed_dim * mlp_ratio), | |
drop=drop, | |
) | |
self.self_attention_norm1 = RMSNorm(embed_dim, eps=norm_eps) | |
self.self_attention_norm2 = RMSNorm(embed_dim, eps=norm_eps) | |
self.cross_attention_norm1 = RMSNorm(embed_dim, eps=norm_eps) | |
self.cross_attention_norm2 = RMSNorm(embed_dim, eps=norm_eps) | |
self.ffn_norm1 = RMSNorm(embed_dim, eps=norm_eps) | |
self.ffn_norm2 = RMSNorm(embed_dim, eps=norm_eps) | |
self.attention_y_norm = RMSNorm(context_dim, eps=norm_eps) | |
self.shared_aln = shared_aln | |
if self.shared_aln: | |
self.ada_gss = nn.Parameter( | |
torch.randn(1, 1, 6, embed_dim) / embed_dim**0.5 | |
) | |
else: | |
lin = nn.Linear(cond_dim, 6 * embed_dim) | |
self.ada_lin = nn.Sequential(nn.SiLU(inplace=False), lin) | |
self.fused_add_norm_fn = None | |
# NOTE: attn_bias is None during inference because kv cache is enabled | |
def forward( | |
self, | |
x, | |
cond_BD, | |
attn_bias, | |
context=None, | |
context_attn_bias=None, | |
freqs_cis=None, | |
): # C: embed_dim, D: cond_dim | |
if self.shared_aln: | |
gamma1, gamma2, scale1, scale2, shift1, shift2 = ( | |
self.ada_gss + cond_BD | |
).unbind( | |
2 | |
) # 116C + B16C =unbind(2)=> 6 B1C | |
else: | |
gamma1, gamma2, scale1, scale2, shift1, shift2 = ( | |
self.ada_lin(cond_BD).view(-1, 1, 6, self.C).unbind(2) | |
) | |
x = x + self.self_attention_norm2( | |
self.attn( | |
self.self_attention_norm1(x).mul(scale1.add(1)).add(shift1), | |
attn_bias=attn_bias, | |
freqs_cis=freqs_cis, | |
).mul(gamma1) | |
) | |
if context is not None: | |
x = x + self.cross_attention_norm2( | |
self.cross_attn( | |
self.cross_attention_norm1(x), | |
self.attention_y_norm(context), | |
context_attn_bias=context_attn_bias, | |
freqs_cis=freqs_cis, | |
) | |
) | |
x = x + self.ffn_norm2( | |
self.ffn(self.ffn_norm1(x).mul(scale2.add(1)).add(shift2)).mul(gamma2) | |
) | |
return x | |
def extra_repr(self) -> str: | |
return f"shared_aln={self.shared_aln}" | |
class AdaLNBeforeHead(nn.Module): | |
def __init__(self, C, D, norm_layer): # C: embed_dim, D: cond_dim | |
super().__init__() | |
self.C, self.D = C, D | |
self.ln_wo_grad = norm_layer(C, elementwise_affine=False) | |
self.ada_lin = nn.Sequential(nn.SiLU(inplace=False), nn.Linear(D, 2 * C)) | |
def forward(self, x_BLC: torch.Tensor, cond_BD: torch.Tensor): | |
scale, shift = self.ada_lin(cond_BD).view(-1, 1, 2, self.C).unbind(2) | |
return self.ln_wo_grad(x_BLC).mul(scale.add(1)).add_(shift) | |