Spaces:
Sleeping
Sleeping
import math | |
from functools import partial | |
from typing import Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from huggingface_hub import PyTorchModelHubMixin | |
import dist | |
from models.basic_var import AdaLNBeforeHead, AdaLNSelfCrossAttn | |
from models.clip import FrozenCLIPEmbedder | |
from models.helpers import gumbel_softmax_with_rng, sample_with_top_k_top_p_ | |
from models.rope import compute_axial_cis | |
from models.vqvae import VQVAE, VectorQuantizer2 | |
class SharedAdaLin(nn.Linear): | |
def forward(self, cond_BD): | |
C = self.weight.shape[0] // 6 | |
return super().forward(cond_BD).view(-1, 1, 6, C) # B16C | |
class VAR(nn.Module): | |
def __init__( | |
self, | |
rope=False, | |
rope_theta=100, | |
rope_size=None, | |
depth=16, | |
embed_dim=1024, | |
num_heads=16, | |
mlp_ratio=4.0, | |
drop_rate=0.0, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.0, | |
norm_eps=1e-6, | |
shared_aln=False, | |
attn_l2_norm=False, | |
patch_nums=(1, 2, 3, 4, 5, 6, 8, 10, 13, 16), # 10 steps by default | |
fused_if_available=True, | |
use_swiglu_ffn=False, | |
Cvae=32, | |
V=4096 | |
): | |
super().__init__() | |
# 0. hyperparameters | |
assert embed_dim % num_heads == 0 | |
self.depth, self.C, self.D, self.num_heads = ( | |
depth, | |
embed_dim, | |
embed_dim, | |
num_heads, | |
) | |
self.Cvae, self.V = Cvae, V | |
self.prog_si = -1 # progressive training | |
self.patch_nums: Tuple[int] = patch_nums | |
self.L = sum(pn**2 for pn in self.patch_nums) | |
self.first_l = self.patch_nums[0] ** 2 | |
self.rope = rope | |
self.num_stages_minus_1 = len(self.patch_nums) - 1 | |
self.rng = torch.Generator(device=dist.get_device()) | |
# 1. input (word) embedding | |
self.word_embed = nn.Linear(self.Cvae, self.C) | |
# 2. text embedding | |
self.pooled_embed_size = 1280 | |
context_dim = 1280 + 768 | |
self.text_pooler = nn.Linear(self.pooled_embed_size, self.D) | |
init_std = math.sqrt(1 / self.C / 3) | |
self.pos_start = nn.Parameter(torch.empty(1, self.first_l, self.C)) | |
nn.init.trunc_normal_(self.pos_start.data, mean=0, std=init_std) | |
# 3. position embedding | |
if not self.rope: | |
# absolute position embedding | |
pos_1LC = [] | |
for i, pn in enumerate(self.patch_nums): | |
pe = torch.empty(1, pn * pn, self.C) | |
nn.init.trunc_normal_(pe, mean=0, std=init_std) | |
pos_1LC.append(pe) | |
pos_1LC = torch.cat(pos_1LC, dim=1) # 1, L, C | |
assert tuple(pos_1LC.shape) == (1, self.L, self.C) | |
self.pos_1LC = nn.Parameter(pos_1LC) | |
self.freqs_cis = None | |
else: | |
# RoPE position embedding | |
assert ( | |
self.C // self.num_heads | |
) % 4 == 0, "2d rope needs head dim to be divisible by 4" | |
patch_nums_m1 = tuple(pn - 1 if pn > 1 else 1 for pn in self.patch_nums) | |
self.compute_cis = partial(compute_axial_cis, dim=self.C // self.num_heads) | |
freqs_cis = [] | |
for i, pn in enumerate(self.patch_nums): | |
norm_coeff = rope_size / patch_nums_m1[i] | |
cur_freqs = self.compute_cis( | |
end_x=pn, end_y=pn, theta=rope_theta, norm_coeff=norm_coeff | |
) | |
freqs_cis.append(cur_freqs[None, ...]) | |
self.freqs_cis = torch.cat(freqs_cis, dim=1) # 1, L, C // 2 -- complex | |
# level embedding (similar to GPT's segment embedding, used to distinguish different levels of token pyramid) | |
self.lvl_embed = nn.Embedding(len(self.patch_nums), self.C) | |
nn.init.trunc_normal_(self.lvl_embed.weight.data, mean=0, std=init_std) | |
# 4. backbone blocks | |
self.shared_ada_lin = ( | |
nn.Sequential(nn.SiLU(inplace=False), SharedAdaLin(self.D, 6 * self.C)) | |
if shared_aln | |
else nn.Identity() | |
) | |
norm_layer = partial(nn.LayerNorm, eps=norm_eps) | |
self.drop_path_rate = drop_path_rate | |
# stochastic depth decay rule (linearly increasing) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] | |
self.blocks = nn.ModuleList([]) | |
for block_idx in range(depth): | |
self.blocks.append( | |
AdaLNSelfCrossAttn( | |
cond_dim=self.D, | |
shared_aln=shared_aln, | |
block_idx=block_idx, | |
embed_dim=self.C, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[block_idx], | |
last_drop_p=0 if block_idx == 0 else dpr[block_idx - 1], | |
qk_norm=attn_l2_norm, | |
context_dim=context_dim, | |
use_swiglu_ffn=use_swiglu_ffn, | |
norm_eps=norm_eps, | |
) | |
) | |
fused_add_norm_fns = [b.fused_add_norm_fn is not None for b in self.blocks] | |
self.using_fused_add_norm_fn = any(fused_add_norm_fns) | |
print( | |
f"\n[constructor] ==== fused_if_available={fused_if_available} (fusing_add_ln={sum(fused_add_norm_fns)}/{self.depth}, fusing_mlp={sum(b.ffn.fused_mlp_func is not None for b in self.blocks)}/{self.depth}) ==== \n" | |
f" [VAR config ] embed_dim={embed_dim}, num_heads={num_heads}, depth={depth}, mlp_ratio={mlp_ratio}\n" | |
f" [drop ratios ] drop_rate={drop_rate}, attn_drop_rate={attn_drop_rate}, drop_path_rate={drop_path_rate:g} ({torch.linspace(0, drop_path_rate, depth)})", | |
end="\n\n", | |
flush=True, | |
) | |
# 5. attention mask used in training (for masking out the future) | |
# it won't be used in inference, since kv cache is enabled | |
d: torch.Tensor = torch.cat( | |
[torch.full((pn * pn,), i) for i, pn in enumerate(self.patch_nums)] | |
).view(1, self.L, 1) | |
dT = d.transpose(1, 2) # dT: 11L | |
lvl_1L = dT[:, 0].contiguous() | |
self.register_buffer("lvl_1L", lvl_1L) | |
attn_bias_for_masking = torch.where(d >= dT, 0.0, -torch.inf).reshape( | |
1, 1, self.L, self.L | |
) | |
self.register_buffer( | |
"attn_bias_for_masking", attn_bias_for_masking.contiguous() | |
) | |
# 6. classifier head | |
self.head_nm = AdaLNBeforeHead(self.C, self.D, norm_layer=norm_layer) | |
self.head = nn.Linear(self.C, self.V) | |
# By defailt disable gradient checkpointing | |
self.use_gradient_checkpointing = False | |
def enable_gradient_checkpointing(self): | |
self.use_gradient_checkpointing = True | |
def disable_gradient_checkpointing(self): | |
self.use_gradient_checkpointing = False | |
def get_logits( | |
self, | |
h_or_h_and_residual: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]], | |
cond_BD: Optional[torch.Tensor], | |
): | |
if not isinstance(h_or_h_and_residual, torch.Tensor): | |
h, resi = h_or_h_and_residual # fused_add_norm must be used | |
h = resi + self.blocks[-1].drop_path(h) | |
else: # fused_add_norm is not used | |
h = h_or_h_and_residual | |
return self.head(self.head_nm(h.float(), cond_BD).float()).float() | |
def parse_batch(self, batch, null_batch=None): | |
embedding_1 = batch["vit_l_14_text_embeddings"] | |
embedding_2 = batch["vit_bigg_14_text_embeddings"] | |
attention_mask = batch["vit_bigg_14_text_mask"] | |
batch_size = embedding_1.size(0) | |
prompt_embed = torch.concat([embedding_1, embedding_2], dim=-1) | |
prompt_lens = attention_mask.sum(dim=-1).to(int) | |
pooled_output = embedding_2[ | |
torch.arange(batch_size, device=embedding_2.device), prompt_lens - 1 | |
] | |
attention_bias = attention_mask.clone() | |
attention_bias[attention_mask == 0] = -float("inf") | |
attention_bias[attention_mask == 1] = 0.0 | |
if null_batch is not None: | |
B, L, hidden_dim = prompt_embed.shape | |
pooled_dim = pooled_output.shape[1] | |
null_context = null_batch['prompt_embed'] | |
null_pooled_embed = null_batch['pooled_embed'] | |
null_attn_bias = null_batch['attn_bias'] | |
null_context = null_context[:, :L].expand(B, L, hidden_dim).to(prompt_embed.device) | |
null_pooled_embed = null_pooled_embed.expand(B, pooled_dim).to(pooled_output.device) | |
null_attn_bias = null_attn_bias[:, :L].expand(B, L).to(attention_bias.device) | |
prompt_embed = torch.cat([prompt_embed, null_context], dim=0) | |
pooled_output = torch.cat([pooled_output, null_pooled_embed], dim=0) | |
attention_bias = torch.cat([attention_bias, null_attn_bias], dim=0) | |
return ( | |
prompt_embed.to(dist.get_device()), | |
pooled_output.to(dist.get_device()), | |
attention_bias.to(dist.get_device()), | |
) | |
def forward( | |
self, | |
x_BLCv_wo_first_l: torch.Tensor, | |
prompt_embeds: torch.Tensor, | |
pooled_prompt_embeds: torch.Tensor, | |
prompt_attn_bias: torch.Tensor, | |
) -> torch.Tensor: # returns logits_BLV | |
""" | |
:param batch: {'image': not used in forward, | |
'text': image caption, | |
'vit_l_14_text_embeddings': text embedding from CLIP-ViT-L-14 | |
'vit_bigg_14_text_embeddings': text embedding from CLIP-ViT-Big-G-14 | |
'vit_bigg_14_text_mask': attention mask to get a correct pooled embedding | |
:param x_BLCv_wo_first_l: teacher forcing input (B, self.L-self.first_l, self.Cvae) | |
:return: logits BLV, V is vocab_size | |
""" | |
bg, ed = 0, self.L | |
B = x_BLCv_wo_first_l.shape[0] | |
with torch.amp.autocast('cuda', enabled=False): | |
pooled_prompt_embeds = self.text_pooler(pooled_prompt_embeds) | |
sos = cond_BD = pooled_prompt_embeds | |
sos = sos.unsqueeze(1).expand(B, self.first_l, -1) + self.pos_start.expand( | |
B, self.first_l, -1 | |
) | |
x_BLC = torch.cat( | |
(sos, self.word_embed(x_BLCv_wo_first_l.float())), dim=1 | |
) | |
x_BLC += self.lvl_embed( | |
self.lvl_1L[:, :ed].expand(B, -1) | |
) # lvl: BLC; pos: 1LC | |
if not self.rope: | |
x_BLC += self.pos_1LC[:, :ed] | |
attn_bias = self.attn_bias_for_masking[:, :, :ed, :ed] | |
cond_BD_or_gss = self.shared_ada_lin(cond_BD) | |
# hack: get the dtype if mixed precision is used | |
temp = x_BLC.new_ones(8, 8) | |
main_type = torch.matmul(temp, temp).dtype | |
x_BLC = x_BLC.to(dtype=main_type) | |
cond_BD_or_gss = cond_BD_or_gss.to(dtype=main_type) | |
attn_bias = attn_bias.to(dtype=main_type) | |
for block in self.blocks: | |
if self.use_gradient_checkpointing: | |
x_BLC = torch.utils.checkpoint.checkpoint( | |
block, | |
x=x_BLC, | |
cond_BD=cond_BD_or_gss, | |
attn_bias=attn_bias, | |
context=prompt_embeds, | |
freqs_cis=self.freqs_cis, | |
context_attn_bias=prompt_attn_bias, | |
use_reentrant=False, | |
) | |
else: | |
x_BLC = block( | |
x=x_BLC, | |
cond_BD=cond_BD_or_gss, | |
attn_bias=attn_bias, | |
context=prompt_embeds, | |
freqs_cis=self.freqs_cis, | |
context_attn_bias=prompt_attn_bias, | |
) | |
with torch.amp.autocast('cuda', enabled=not self.training): | |
x_BLC = self.get_logits(x_BLC.float(), cond_BD) | |
return x_BLC # logits BLV, V is vocab_size | |
def init_weights( | |
self, | |
init_adaln=0.5, | |
init_adaln_gamma=1e-5, | |
init_head=0.02, | |
init_std=0.02, | |
): | |
if init_std < 0: | |
init_std = (1 / self.C / 3) ** 0.5 # init_std < 0: automated | |
print(f"[init_weights] {type(self).__name__} with {init_std=:g}") | |
for m in self.modules(): | |
with_weight = hasattr(m, "weight") and m.weight is not None | |
with_bias = hasattr(m, "bias") and m.bias is not None | |
if isinstance(m, nn.Linear): | |
nn.init.trunc_normal_(m.weight.data, std=init_std) | |
if with_bias: | |
m.bias.data.zero_() | |
elif isinstance(m, nn.Embedding): | |
nn.init.trunc_normal_(m.weight.data, std=init_std) | |
if m.padding_idx is not None: | |
m.weight.data[m.padding_idx].zero_() | |
elif isinstance( | |
m, | |
( | |
nn.LayerNorm, | |
nn.BatchNorm1d, | |
nn.BatchNorm2d, | |
nn.BatchNorm3d, | |
nn.SyncBatchNorm, | |
nn.GroupNorm, | |
nn.InstanceNorm1d, | |
nn.InstanceNorm2d, | |
nn.InstanceNorm3d, | |
), | |
): | |
if with_weight: | |
m.weight.data.fill_(1.0) | |
if with_bias: | |
m.bias.data.zero_() | |
if init_head >= 0: | |
if isinstance(self.head, nn.Linear): | |
self.head.weight.data.mul_(init_head) | |
self.head.bias.data.zero_() | |
elif isinstance(self.head, nn.Sequential): | |
self.head[-1].weight.data.mul_(init_head) | |
self.head[-1].bias.data.zero_() | |
if isinstance(self.head_nm, AdaLNBeforeHead): | |
self.head_nm.ada_lin[-1].weight.data.mul_(init_adaln) | |
if ( | |
hasattr(self.head_nm.ada_lin[-1], "bias") | |
and self.head_nm.ada_lin[-1].bias is not None | |
): | |
self.head_nm.ada_lin[-1].bias.data.zero_() | |
depth = len(self.blocks) | |
for block in self.blocks: | |
block.attn.proj.weight.data.div_(math.sqrt(2 * depth)) | |
block.cross_attn.proj.weight.data.div_(math.sqrt(2 * depth)) | |
if hasattr(block.ffn, "fc2"): | |
block.ffn.fc2.weight.data.div_(math.sqrt(2 * depth)) | |
if hasattr(block, "ada_lin"): | |
block.ada_lin[-1].weight.data[2 * self.C :].mul_(init_adaln) | |
block.ada_lin[-1].weight.data[: 2 * self.C].mul_(init_adaln_gamma) | |
if ( | |
hasattr(block.ada_lin[-1], "bias") | |
and block.ada_lin[-1].bias is not None | |
): | |
block.ada_lin[-1].bias.data.zero_() | |
elif hasattr(block, "ada_gss"): | |
block.ada_gss.data[:, :, 2:].mul_(init_adaln) | |
block.ada_gss.data[:, :, :2].mul_(init_adaln_gamma) | |
def extra_repr(self): | |
return f"drop_path_rate={self.drop_path_rate:g}" | |
class TVARHF(VAR, PyTorchModelHubMixin): | |
# tags=["image-generation"]): | |
def __init__( | |
self, | |
depth=30, | |
shared_aln=False, | |
attn_l2_norm=True, | |
rope=True, | |
rope_theta=10000, | |
rope_size=128, | |
use_swiglu_ffn=True, | |
): | |
heads = depth | |
width = depth * 64 | |
super().__init__( | |
depth=depth, | |
embed_dim=width, | |
num_heads=heads, | |
drop_rate=0.0, | |
attn_drop_rate=0.0, | |
norm_eps=1e-6, | |
shared_aln=shared_aln, | |
attn_l2_norm=attn_l2_norm, | |
patch_nums=(1, 2, 3, 4, 6, 9, 13, 18, 24, 32), | |
rope=rope, | |
rope_theta=rope_theta, | |
rope_size=rope_size, | |
use_swiglu_ffn=use_swiglu_ffn, | |
) | |