from typing import Tuple import torch.nn as nn from .clip import FrozenCLIPEmbedder from .quant import VectorQuantizer2 from .var import VAR from .vqvae import VQVAE from .pipeline import TVARPipeline def build_vae_var( # Shared args device, patch_nums=(1, 2, 3, 4, 5, 6, 8, 10, 13, 16), # 10 steps by default # VQVAE args V=4096, Cvae=32, ch=160, share_quant_resi=4, # VAR args depth=16, shared_aln=False, attn_l2_norm=True, init_adaln=0.5, init_adaln_gamma=1e-5, init_head=0.02, init_std=-1, # init_std < 0: automated text_encoder_path=None, text_encoder_2_path=None, rope=False, rope_theta=100, rope_size=None, dpr=0, use_swiglu_ffn=False, ) -> Tuple[VQVAE, VAR]: heads = depth width = depth * 64 if dpr > 0: dpr = dpr * depth / 24 # disable built-in initialization for speed for clz in ( nn.Linear, nn.LayerNorm, nn.BatchNorm2d, nn.SyncBatchNorm, nn.Conv1d, nn.Conv2d, nn.ConvTranspose1d, nn.ConvTranspose2d, ): setattr(clz, "reset_parameters", lambda self: None) # build models vae_local = VQVAE( vocab_size=V, z_channels=Cvae, ch=ch, test_mode=True, share_quant_resi=share_quant_resi, v_patch_nums=patch_nums, ).to(device) var_wo_ddp = VAR( depth=depth, embed_dim=width, num_heads=heads, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=dpr, norm_eps=1e-6, shared_aln=shared_aln, attn_l2_norm=attn_l2_norm, patch_nums=patch_nums, rope=rope, rope_theta=rope_theta, rope_size=rope_size, use_swiglu_ffn=use_swiglu_ffn, ).to(device) var_wo_ddp.init_weights( init_adaln=init_adaln, init_adaln_gamma=init_adaln_gamma, init_head=init_head, init_std=init_std, ) text_encoder = FrozenCLIPEmbedder(text_encoder_path) text_encoder_2 = FrozenCLIPEmbedder(text_encoder_2_path) pipe = TVARPipeline(var_wo_ddp, vae_local, text_encoder, text_encoder_2, device) return vae_local, var_wo_ddp, pipe