Spaces:
Sleeping
Sleeping
import argparse | |
import tempfile | |
import torch | |
from accelerate import load_checkpoint_and_dispatch | |
from transformers import CLIPTextModelWithProjection, CLIPTokenizer | |
from diffusers import UnCLIPPipeline, UNet2DConditionModel, UNet2DModel | |
from diffusers.models.prior_transformer import PriorTransformer | |
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel | |
from diffusers.schedulers.scheduling_unclip import UnCLIPScheduler | |
""" | |
Example - From the diffusers root directory: | |
Download weights: | |
```sh | |
$ wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/efdf6206d8ed593961593dc029a8affa/decoder-ckpt-step%3D01000000-of-01000000.ckpt | |
$ wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/4226b831ae0279020d134281f3c31590/improved-sr-ckpt-step%3D1.2M.ckpt | |
$ wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/85626483eaca9f581e2a78d31ff905ca/prior-ckpt-step%3D01000000-of-01000000.ckpt | |
$ wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/0b62380a75e56f073e2844ab5199153d/ViT-L-14_stats.th | |
``` | |
Convert the model: | |
```sh | |
$ python scripts/convert_kakao_brain_unclip_to_diffusers.py \ | |
--decoder_checkpoint_path ./decoder-ckpt-step\=01000000-of-01000000.ckpt \ | |
--super_res_unet_checkpoint_path ./improved-sr-ckpt-step\=1.2M.ckpt \ | |
--prior_checkpoint_path ./prior-ckpt-step\=01000000-of-01000000.ckpt \ | |
--clip_stat_path ./ViT-L-14_stats.th \ | |
--dump_path <path where to save model> | |
``` | |
""" | |
# prior | |
PRIOR_ORIGINAL_PREFIX = "model" | |
# Uses default arguments | |
PRIOR_CONFIG = {} | |
def prior_model_from_original_config(): | |
model = PriorTransformer(**PRIOR_CONFIG) | |
return model | |
def prior_original_checkpoint_to_diffusers_checkpoint(model, checkpoint, clip_stats_checkpoint): | |
diffusers_checkpoint = {} | |
# <original>.time_embed.0 -> <diffusers>.time_embedding.linear_1 | |
diffusers_checkpoint.update( | |
{ | |
"time_embedding.linear_1.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.0.weight"], | |
"time_embedding.linear_1.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.0.bias"], | |
} | |
) | |
# <original>.clip_img_proj -> <diffusers>.proj_in | |
diffusers_checkpoint.update( | |
{ | |
"proj_in.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_img_proj.weight"], | |
"proj_in.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_img_proj.bias"], | |
} | |
) | |
# <original>.text_emb_proj -> <diffusers>.embedding_proj | |
diffusers_checkpoint.update( | |
{ | |
"embedding_proj.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_emb_proj.weight"], | |
"embedding_proj.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_emb_proj.bias"], | |
} | |
) | |
# <original>.text_enc_proj -> <diffusers>.encoder_hidden_states_proj | |
diffusers_checkpoint.update( | |
{ | |
"encoder_hidden_states_proj.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_enc_proj.weight"], | |
"encoder_hidden_states_proj.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_enc_proj.bias"], | |
} | |
) | |
# <original>.positional_embedding -> <diffusers>.positional_embedding | |
diffusers_checkpoint.update({"positional_embedding": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.positional_embedding"]}) | |
# <original>.prd_emb -> <diffusers>.prd_embedding | |
diffusers_checkpoint.update({"prd_embedding": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.prd_emb"]}) | |
# <original>.time_embed.2 -> <diffusers>.time_embedding.linear_2 | |
diffusers_checkpoint.update( | |
{ | |
"time_embedding.linear_2.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.2.weight"], | |
"time_embedding.linear_2.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.2.bias"], | |
} | |
) | |
# <original>.resblocks.<x> -> <diffusers>.transformer_blocks.<x> | |
for idx in range(len(model.transformer_blocks)): | |
diffusers_transformer_prefix = f"transformer_blocks.{idx}" | |
original_transformer_prefix = f"{PRIOR_ORIGINAL_PREFIX}.transformer.resblocks.{idx}" | |
# <original>.attn -> <diffusers>.attn1 | |
diffusers_attention_prefix = f"{diffusers_transformer_prefix}.attn1" | |
original_attention_prefix = f"{original_transformer_prefix}.attn" | |
diffusers_checkpoint.update( | |
prior_attention_to_diffusers( | |
checkpoint, | |
diffusers_attention_prefix=diffusers_attention_prefix, | |
original_attention_prefix=original_attention_prefix, | |
attention_head_dim=model.attention_head_dim, | |
) | |
) | |
# <original>.mlp -> <diffusers>.ff | |
diffusers_ff_prefix = f"{diffusers_transformer_prefix}.ff" | |
original_ff_prefix = f"{original_transformer_prefix}.mlp" | |
diffusers_checkpoint.update( | |
prior_ff_to_diffusers( | |
checkpoint, diffusers_ff_prefix=diffusers_ff_prefix, original_ff_prefix=original_ff_prefix | |
) | |
) | |
# <original>.ln_1 -> <diffusers>.norm1 | |
diffusers_checkpoint.update( | |
{ | |
f"{diffusers_transformer_prefix}.norm1.weight": checkpoint[ | |
f"{original_transformer_prefix}.ln_1.weight" | |
], | |
f"{diffusers_transformer_prefix}.norm1.bias": checkpoint[f"{original_transformer_prefix}.ln_1.bias"], | |
} | |
) | |
# <original>.ln_2 -> <diffusers>.norm3 | |
diffusers_checkpoint.update( | |
{ | |
f"{diffusers_transformer_prefix}.norm3.weight": checkpoint[ | |
f"{original_transformer_prefix}.ln_2.weight" | |
], | |
f"{diffusers_transformer_prefix}.norm3.bias": checkpoint[f"{original_transformer_prefix}.ln_2.bias"], | |
} | |
) | |
# <original>.final_ln -> <diffusers>.norm_out | |
diffusers_checkpoint.update( | |
{ | |
"norm_out.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.final_ln.weight"], | |
"norm_out.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.final_ln.bias"], | |
} | |
) | |
# <original>.out_proj -> <diffusers>.proj_to_clip_embeddings | |
diffusers_checkpoint.update( | |
{ | |
"proj_to_clip_embeddings.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.out_proj.weight"], | |
"proj_to_clip_embeddings.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.out_proj.bias"], | |
} | |
) | |
# clip stats | |
clip_mean, clip_std = clip_stats_checkpoint | |
clip_mean = clip_mean[None, :] | |
clip_std = clip_std[None, :] | |
diffusers_checkpoint.update({"clip_mean": clip_mean, "clip_std": clip_std}) | |
return diffusers_checkpoint | |
def prior_attention_to_diffusers( | |
checkpoint, *, diffusers_attention_prefix, original_attention_prefix, attention_head_dim | |
): | |
diffusers_checkpoint = {} | |
# <original>.c_qkv -> <diffusers>.{to_q, to_k, to_v} | |
[q_weight, k_weight, v_weight], [q_bias, k_bias, v_bias] = split_attentions( | |
weight=checkpoint[f"{original_attention_prefix}.c_qkv.weight"], | |
bias=checkpoint[f"{original_attention_prefix}.c_qkv.bias"], | |
split=3, | |
chunk_size=attention_head_dim, | |
) | |
diffusers_checkpoint.update( | |
{ | |
f"{diffusers_attention_prefix}.to_q.weight": q_weight, | |
f"{diffusers_attention_prefix}.to_q.bias": q_bias, | |
f"{diffusers_attention_prefix}.to_k.weight": k_weight, | |
f"{diffusers_attention_prefix}.to_k.bias": k_bias, | |
f"{diffusers_attention_prefix}.to_v.weight": v_weight, | |
f"{diffusers_attention_prefix}.to_v.bias": v_bias, | |
} | |
) | |
# <original>.c_proj -> <diffusers>.to_out.0 | |
diffusers_checkpoint.update( | |
{ | |
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{original_attention_prefix}.c_proj.weight"], | |
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{original_attention_prefix}.c_proj.bias"], | |
} | |
) | |
return diffusers_checkpoint | |
def prior_ff_to_diffusers(checkpoint, *, diffusers_ff_prefix, original_ff_prefix): | |
diffusers_checkpoint = { | |
# <original>.c_fc -> <diffusers>.net.0.proj | |
f"{diffusers_ff_prefix}.net.{0}.proj.weight": checkpoint[f"{original_ff_prefix}.c_fc.weight"], | |
f"{diffusers_ff_prefix}.net.{0}.proj.bias": checkpoint[f"{original_ff_prefix}.c_fc.bias"], | |
# <original>.c_proj -> <diffusers>.net.2 | |
f"{diffusers_ff_prefix}.net.{2}.weight": checkpoint[f"{original_ff_prefix}.c_proj.weight"], | |
f"{diffusers_ff_prefix}.net.{2}.bias": checkpoint[f"{original_ff_prefix}.c_proj.bias"], | |
} | |
return diffusers_checkpoint | |
# done prior | |
# decoder | |
DECODER_ORIGINAL_PREFIX = "model" | |
# We are hardcoding the model configuration for now. If we need to generalize to more model configurations, we can | |
# update then. | |
DECODER_CONFIG = { | |
"sample_size": 64, | |
"layers_per_block": 3, | |
"down_block_types": ( | |
"ResnetDownsampleBlock2D", | |
"SimpleCrossAttnDownBlock2D", | |
"SimpleCrossAttnDownBlock2D", | |
"SimpleCrossAttnDownBlock2D", | |
), | |
"up_block_types": ( | |
"SimpleCrossAttnUpBlock2D", | |
"SimpleCrossAttnUpBlock2D", | |
"SimpleCrossAttnUpBlock2D", | |
"ResnetUpsampleBlock2D", | |
), | |
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn", | |
"block_out_channels": (320, 640, 960, 1280), | |
"in_channels": 3, | |
"out_channels": 6, | |
"cross_attention_dim": 1536, | |
"class_embed_type": "identity", | |
"attention_head_dim": 64, | |
"resnet_time_scale_shift": "scale_shift", | |
} | |
def decoder_model_from_original_config(): | |
model = UNet2DConditionModel(**DECODER_CONFIG) | |
return model | |
def decoder_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): | |
diffusers_checkpoint = {} | |
original_unet_prefix = DECODER_ORIGINAL_PREFIX | |
num_head_channels = DECODER_CONFIG["attention_head_dim"] | |
diffusers_checkpoint.update(unet_time_embeddings(checkpoint, original_unet_prefix)) | |
diffusers_checkpoint.update(unet_conv_in(checkpoint, original_unet_prefix)) | |
# <original>.input_blocks -> <diffusers>.down_blocks | |
original_down_block_idx = 1 | |
for diffusers_down_block_idx in range(len(model.down_blocks)): | |
checkpoint_update, num_original_down_blocks = unet_downblock_to_diffusers_checkpoint( | |
model, | |
checkpoint, | |
diffusers_down_block_idx=diffusers_down_block_idx, | |
original_down_block_idx=original_down_block_idx, | |
original_unet_prefix=original_unet_prefix, | |
num_head_channels=num_head_channels, | |
) | |
original_down_block_idx += num_original_down_blocks | |
diffusers_checkpoint.update(checkpoint_update) | |
# done <original>.input_blocks -> <diffusers>.down_blocks | |
diffusers_checkpoint.update( | |
unet_midblock_to_diffusers_checkpoint( | |
model, | |
checkpoint, | |
original_unet_prefix=original_unet_prefix, | |
num_head_channels=num_head_channels, | |
) | |
) | |
# <original>.output_blocks -> <diffusers>.up_blocks | |
original_up_block_idx = 0 | |
for diffusers_up_block_idx in range(len(model.up_blocks)): | |
checkpoint_update, num_original_up_blocks = unet_upblock_to_diffusers_checkpoint( | |
model, | |
checkpoint, | |
diffusers_up_block_idx=diffusers_up_block_idx, | |
original_up_block_idx=original_up_block_idx, | |
original_unet_prefix=original_unet_prefix, | |
num_head_channels=num_head_channels, | |
) | |
original_up_block_idx += num_original_up_blocks | |
diffusers_checkpoint.update(checkpoint_update) | |
# done <original>.output_blocks -> <diffusers>.up_blocks | |
diffusers_checkpoint.update(unet_conv_norm_out(checkpoint, original_unet_prefix)) | |
diffusers_checkpoint.update(unet_conv_out(checkpoint, original_unet_prefix)) | |
return diffusers_checkpoint | |
# done decoder | |
# text proj | |
def text_proj_from_original_config(): | |
# From the conditional unet constructor where the dimension of the projected time embeddings is | |
# constructed | |
time_embed_dim = DECODER_CONFIG["block_out_channels"][0] * 4 | |
cross_attention_dim = DECODER_CONFIG["cross_attention_dim"] | |
model = UnCLIPTextProjModel(time_embed_dim=time_embed_dim, cross_attention_dim=cross_attention_dim) | |
return model | |
# Note that the input checkpoint is the original decoder checkpoint | |
def text_proj_original_checkpoint_to_diffusers_checkpoint(checkpoint): | |
diffusers_checkpoint = { | |
# <original>.text_seq_proj.0 -> <diffusers>.encoder_hidden_states_proj | |
"encoder_hidden_states_proj.weight": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_seq_proj.0.weight"], | |
"encoder_hidden_states_proj.bias": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_seq_proj.0.bias"], | |
# <original>.text_seq_proj.1 -> <diffusers>.text_encoder_hidden_states_norm | |
"text_encoder_hidden_states_norm.weight": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_seq_proj.1.weight"], | |
"text_encoder_hidden_states_norm.bias": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_seq_proj.1.bias"], | |
# <original>.clip_tok_proj -> <diffusers>.clip_extra_context_tokens_proj | |
"clip_extra_context_tokens_proj.weight": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.clip_tok_proj.weight"], | |
"clip_extra_context_tokens_proj.bias": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.clip_tok_proj.bias"], | |
# <original>.text_feat_proj -> <diffusers>.embedding_proj | |
"embedding_proj.weight": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_feat_proj.weight"], | |
"embedding_proj.bias": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_feat_proj.bias"], | |
# <original>.cf_param -> <diffusers>.learned_classifier_free_guidance_embeddings | |
"learned_classifier_free_guidance_embeddings": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.cf_param"], | |
# <original>.clip_emb -> <diffusers>.clip_image_embeddings_project_to_time_embeddings | |
"clip_image_embeddings_project_to_time_embeddings.weight": checkpoint[ | |
f"{DECODER_ORIGINAL_PREFIX}.clip_emb.weight" | |
], | |
"clip_image_embeddings_project_to_time_embeddings.bias": checkpoint[ | |
f"{DECODER_ORIGINAL_PREFIX}.clip_emb.bias" | |
], | |
} | |
return diffusers_checkpoint | |
# done text proj | |
# super res unet first steps | |
SUPER_RES_UNET_FIRST_STEPS_PREFIX = "model_first_steps" | |
SUPER_RES_UNET_FIRST_STEPS_CONFIG = { | |
"sample_size": 256, | |
"layers_per_block": 3, | |
"down_block_types": ( | |
"ResnetDownsampleBlock2D", | |
"ResnetDownsampleBlock2D", | |
"ResnetDownsampleBlock2D", | |
"ResnetDownsampleBlock2D", | |
), | |
"up_block_types": ( | |
"ResnetUpsampleBlock2D", | |
"ResnetUpsampleBlock2D", | |
"ResnetUpsampleBlock2D", | |
"ResnetUpsampleBlock2D", | |
), | |
"block_out_channels": (320, 640, 960, 1280), | |
"in_channels": 6, | |
"out_channels": 3, | |
"add_attention": False, | |
} | |
def super_res_unet_first_steps_model_from_original_config(): | |
model = UNet2DModel(**SUPER_RES_UNET_FIRST_STEPS_CONFIG) | |
return model | |
def super_res_unet_first_steps_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): | |
diffusers_checkpoint = {} | |
original_unet_prefix = SUPER_RES_UNET_FIRST_STEPS_PREFIX | |
diffusers_checkpoint.update(unet_time_embeddings(checkpoint, original_unet_prefix)) | |
diffusers_checkpoint.update(unet_conv_in(checkpoint, original_unet_prefix)) | |
# <original>.input_blocks -> <diffusers>.down_blocks | |
original_down_block_idx = 1 | |
for diffusers_down_block_idx in range(len(model.down_blocks)): | |
checkpoint_update, num_original_down_blocks = unet_downblock_to_diffusers_checkpoint( | |
model, | |
checkpoint, | |
diffusers_down_block_idx=diffusers_down_block_idx, | |
original_down_block_idx=original_down_block_idx, | |
original_unet_prefix=original_unet_prefix, | |
num_head_channels=None, | |
) | |
original_down_block_idx += num_original_down_blocks | |
diffusers_checkpoint.update(checkpoint_update) | |
diffusers_checkpoint.update( | |
unet_midblock_to_diffusers_checkpoint( | |
model, | |
checkpoint, | |
original_unet_prefix=original_unet_prefix, | |
num_head_channels=None, | |
) | |
) | |
# <original>.output_blocks -> <diffusers>.up_blocks | |
original_up_block_idx = 0 | |
for diffusers_up_block_idx in range(len(model.up_blocks)): | |
checkpoint_update, num_original_up_blocks = unet_upblock_to_diffusers_checkpoint( | |
model, | |
checkpoint, | |
diffusers_up_block_idx=diffusers_up_block_idx, | |
original_up_block_idx=original_up_block_idx, | |
original_unet_prefix=original_unet_prefix, | |
num_head_channels=None, | |
) | |
original_up_block_idx += num_original_up_blocks | |
diffusers_checkpoint.update(checkpoint_update) | |
# done <original>.output_blocks -> <diffusers>.up_blocks | |
diffusers_checkpoint.update(unet_conv_norm_out(checkpoint, original_unet_prefix)) | |
diffusers_checkpoint.update(unet_conv_out(checkpoint, original_unet_prefix)) | |
return diffusers_checkpoint | |
# done super res unet first steps | |
# super res unet last step | |
SUPER_RES_UNET_LAST_STEP_PREFIX = "model_last_step" | |
SUPER_RES_UNET_LAST_STEP_CONFIG = { | |
"sample_size": 256, | |
"layers_per_block": 3, | |
"down_block_types": ( | |
"ResnetDownsampleBlock2D", | |
"ResnetDownsampleBlock2D", | |
"ResnetDownsampleBlock2D", | |
"ResnetDownsampleBlock2D", | |
), | |
"up_block_types": ( | |
"ResnetUpsampleBlock2D", | |
"ResnetUpsampleBlock2D", | |
"ResnetUpsampleBlock2D", | |
"ResnetUpsampleBlock2D", | |
), | |
"block_out_channels": (320, 640, 960, 1280), | |
"in_channels": 6, | |
"out_channels": 3, | |
"add_attention": False, | |
} | |
def super_res_unet_last_step_model_from_original_config(): | |
model = UNet2DModel(**SUPER_RES_UNET_LAST_STEP_CONFIG) | |
return model | |
def super_res_unet_last_step_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): | |
diffusers_checkpoint = {} | |
original_unet_prefix = SUPER_RES_UNET_LAST_STEP_PREFIX | |
diffusers_checkpoint.update(unet_time_embeddings(checkpoint, original_unet_prefix)) | |
diffusers_checkpoint.update(unet_conv_in(checkpoint, original_unet_prefix)) | |
# <original>.input_blocks -> <diffusers>.down_blocks | |
original_down_block_idx = 1 | |
for diffusers_down_block_idx in range(len(model.down_blocks)): | |
checkpoint_update, num_original_down_blocks = unet_downblock_to_diffusers_checkpoint( | |
model, | |
checkpoint, | |
diffusers_down_block_idx=diffusers_down_block_idx, | |
original_down_block_idx=original_down_block_idx, | |
original_unet_prefix=original_unet_prefix, | |
num_head_channels=None, | |
) | |
original_down_block_idx += num_original_down_blocks | |
diffusers_checkpoint.update(checkpoint_update) | |
diffusers_checkpoint.update( | |
unet_midblock_to_diffusers_checkpoint( | |
model, | |
checkpoint, | |
original_unet_prefix=original_unet_prefix, | |
num_head_channels=None, | |
) | |
) | |
# <original>.output_blocks -> <diffusers>.up_blocks | |
original_up_block_idx = 0 | |
for diffusers_up_block_idx in range(len(model.up_blocks)): | |
checkpoint_update, num_original_up_blocks = unet_upblock_to_diffusers_checkpoint( | |
model, | |
checkpoint, | |
diffusers_up_block_idx=diffusers_up_block_idx, | |
original_up_block_idx=original_up_block_idx, | |
original_unet_prefix=original_unet_prefix, | |
num_head_channels=None, | |
) | |
original_up_block_idx += num_original_up_blocks | |
diffusers_checkpoint.update(checkpoint_update) | |
# done <original>.output_blocks -> <diffusers>.up_blocks | |
diffusers_checkpoint.update(unet_conv_norm_out(checkpoint, original_unet_prefix)) | |
diffusers_checkpoint.update(unet_conv_out(checkpoint, original_unet_prefix)) | |
return diffusers_checkpoint | |
# done super res unet last step | |
# unet utils | |
# <original>.time_embed -> <diffusers>.time_embedding | |
def unet_time_embeddings(checkpoint, original_unet_prefix): | |
diffusers_checkpoint = {} | |
diffusers_checkpoint.update( | |
{ | |
"time_embedding.linear_1.weight": checkpoint[f"{original_unet_prefix}.time_embed.0.weight"], | |
"time_embedding.linear_1.bias": checkpoint[f"{original_unet_prefix}.time_embed.0.bias"], | |
"time_embedding.linear_2.weight": checkpoint[f"{original_unet_prefix}.time_embed.2.weight"], | |
"time_embedding.linear_2.bias": checkpoint[f"{original_unet_prefix}.time_embed.2.bias"], | |
} | |
) | |
return diffusers_checkpoint | |
# <original>.input_blocks.0 -> <diffusers>.conv_in | |
def unet_conv_in(checkpoint, original_unet_prefix): | |
diffusers_checkpoint = {} | |
diffusers_checkpoint.update( | |
{ | |
"conv_in.weight": checkpoint[f"{original_unet_prefix}.input_blocks.0.0.weight"], | |
"conv_in.bias": checkpoint[f"{original_unet_prefix}.input_blocks.0.0.bias"], | |
} | |
) | |
return diffusers_checkpoint | |
# <original>.out.0 -> <diffusers>.conv_norm_out | |
def unet_conv_norm_out(checkpoint, original_unet_prefix): | |
diffusers_checkpoint = {} | |
diffusers_checkpoint.update( | |
{ | |
"conv_norm_out.weight": checkpoint[f"{original_unet_prefix}.out.0.weight"], | |
"conv_norm_out.bias": checkpoint[f"{original_unet_prefix}.out.0.bias"], | |
} | |
) | |
return diffusers_checkpoint | |
# <original>.out.2 -> <diffusers>.conv_out | |
def unet_conv_out(checkpoint, original_unet_prefix): | |
diffusers_checkpoint = {} | |
diffusers_checkpoint.update( | |
{ | |
"conv_out.weight": checkpoint[f"{original_unet_prefix}.out.2.weight"], | |
"conv_out.bias": checkpoint[f"{original_unet_prefix}.out.2.bias"], | |
} | |
) | |
return diffusers_checkpoint | |
# <original>.input_blocks -> <diffusers>.down_blocks | |
def unet_downblock_to_diffusers_checkpoint( | |
model, checkpoint, *, diffusers_down_block_idx, original_down_block_idx, original_unet_prefix, num_head_channels | |
): | |
diffusers_checkpoint = {} | |
diffusers_resnet_prefix = f"down_blocks.{diffusers_down_block_idx}.resnets" | |
original_down_block_prefix = f"{original_unet_prefix}.input_blocks" | |
down_block = model.down_blocks[diffusers_down_block_idx] | |
num_resnets = len(down_block.resnets) | |
if down_block.downsamplers is None: | |
downsampler = False | |
else: | |
assert len(down_block.downsamplers) == 1 | |
downsampler = True | |
# The downsample block is also a resnet | |
num_resnets += 1 | |
for resnet_idx_inc in range(num_resnets): | |
full_resnet_prefix = f"{original_down_block_prefix}.{original_down_block_idx + resnet_idx_inc}.0" | |
if downsampler and resnet_idx_inc == num_resnets - 1: | |
# this is a downsample block | |
full_diffusers_resnet_prefix = f"down_blocks.{diffusers_down_block_idx}.downsamplers.0" | |
else: | |
# this is a regular resnet block | |
full_diffusers_resnet_prefix = f"{diffusers_resnet_prefix}.{resnet_idx_inc}" | |
diffusers_checkpoint.update( | |
resnet_to_diffusers_checkpoint( | |
checkpoint, resnet_prefix=full_resnet_prefix, diffusers_resnet_prefix=full_diffusers_resnet_prefix | |
) | |
) | |
if hasattr(down_block, "attentions"): | |
num_attentions = len(down_block.attentions) | |
diffusers_attention_prefix = f"down_blocks.{diffusers_down_block_idx}.attentions" | |
for attention_idx_inc in range(num_attentions): | |
full_attention_prefix = f"{original_down_block_prefix}.{original_down_block_idx + attention_idx_inc}.1" | |
full_diffusers_attention_prefix = f"{diffusers_attention_prefix}.{attention_idx_inc}" | |
diffusers_checkpoint.update( | |
attention_to_diffusers_checkpoint( | |
checkpoint, | |
attention_prefix=full_attention_prefix, | |
diffusers_attention_prefix=full_diffusers_attention_prefix, | |
num_head_channels=num_head_channels, | |
) | |
) | |
num_original_down_blocks = num_resnets | |
return diffusers_checkpoint, num_original_down_blocks | |
# <original>.middle_block -> <diffusers>.mid_block | |
def unet_midblock_to_diffusers_checkpoint(model, checkpoint, *, original_unet_prefix, num_head_channels): | |
diffusers_checkpoint = {} | |
# block 0 | |
original_block_idx = 0 | |
diffusers_checkpoint.update( | |
resnet_to_diffusers_checkpoint( | |
checkpoint, | |
diffusers_resnet_prefix="mid_block.resnets.0", | |
resnet_prefix=f"{original_unet_prefix}.middle_block.{original_block_idx}", | |
) | |
) | |
original_block_idx += 1 | |
# optional block 1 | |
if hasattr(model.mid_block, "attentions") and model.mid_block.attentions[0] is not None: | |
diffusers_checkpoint.update( | |
attention_to_diffusers_checkpoint( | |
checkpoint, | |
diffusers_attention_prefix="mid_block.attentions.0", | |
attention_prefix=f"{original_unet_prefix}.middle_block.{original_block_idx}", | |
num_head_channels=num_head_channels, | |
) | |
) | |
original_block_idx += 1 | |
# block 1 or block 2 | |
diffusers_checkpoint.update( | |
resnet_to_diffusers_checkpoint( | |
checkpoint, | |
diffusers_resnet_prefix="mid_block.resnets.1", | |
resnet_prefix=f"{original_unet_prefix}.middle_block.{original_block_idx}", | |
) | |
) | |
return diffusers_checkpoint | |
# <original>.output_blocks -> <diffusers>.up_blocks | |
def unet_upblock_to_diffusers_checkpoint( | |
model, checkpoint, *, diffusers_up_block_idx, original_up_block_idx, original_unet_prefix, num_head_channels | |
): | |
diffusers_checkpoint = {} | |
diffusers_resnet_prefix = f"up_blocks.{diffusers_up_block_idx}.resnets" | |
original_up_block_prefix = f"{original_unet_prefix}.output_blocks" | |
up_block = model.up_blocks[diffusers_up_block_idx] | |
num_resnets = len(up_block.resnets) | |
if up_block.upsamplers is None: | |
upsampler = False | |
else: | |
assert len(up_block.upsamplers) == 1 | |
upsampler = True | |
# The upsample block is also a resnet | |
num_resnets += 1 | |
has_attentions = hasattr(up_block, "attentions") | |
for resnet_idx_inc in range(num_resnets): | |
if upsampler and resnet_idx_inc == num_resnets - 1: | |
# this is an upsample block | |
if has_attentions: | |
# There is a middle attention block that we skip | |
original_resnet_block_idx = 2 | |
else: | |
original_resnet_block_idx = 1 | |
# we add the `minus 1` because the last two resnets are stuck together in the same output block | |
full_resnet_prefix = ( | |
f"{original_up_block_prefix}.{original_up_block_idx + resnet_idx_inc - 1}.{original_resnet_block_idx}" | |
) | |
full_diffusers_resnet_prefix = f"up_blocks.{diffusers_up_block_idx}.upsamplers.0" | |
else: | |
# this is a regular resnet block | |
full_resnet_prefix = f"{original_up_block_prefix}.{original_up_block_idx + resnet_idx_inc}.0" | |
full_diffusers_resnet_prefix = f"{diffusers_resnet_prefix}.{resnet_idx_inc}" | |
diffusers_checkpoint.update( | |
resnet_to_diffusers_checkpoint( | |
checkpoint, resnet_prefix=full_resnet_prefix, diffusers_resnet_prefix=full_diffusers_resnet_prefix | |
) | |
) | |
if has_attentions: | |
num_attentions = len(up_block.attentions) | |
diffusers_attention_prefix = f"up_blocks.{diffusers_up_block_idx}.attentions" | |
for attention_idx_inc in range(num_attentions): | |
full_attention_prefix = f"{original_up_block_prefix}.{original_up_block_idx + attention_idx_inc}.1" | |
full_diffusers_attention_prefix = f"{diffusers_attention_prefix}.{attention_idx_inc}" | |
diffusers_checkpoint.update( | |
attention_to_diffusers_checkpoint( | |
checkpoint, | |
attention_prefix=full_attention_prefix, | |
diffusers_attention_prefix=full_diffusers_attention_prefix, | |
num_head_channels=num_head_channels, | |
) | |
) | |
num_original_down_blocks = num_resnets - 1 if upsampler else num_resnets | |
return diffusers_checkpoint, num_original_down_blocks | |
def resnet_to_diffusers_checkpoint(checkpoint, *, diffusers_resnet_prefix, resnet_prefix): | |
diffusers_checkpoint = { | |
f"{diffusers_resnet_prefix}.norm1.weight": checkpoint[f"{resnet_prefix}.in_layers.0.weight"], | |
f"{diffusers_resnet_prefix}.norm1.bias": checkpoint[f"{resnet_prefix}.in_layers.0.bias"], | |
f"{diffusers_resnet_prefix}.conv1.weight": checkpoint[f"{resnet_prefix}.in_layers.2.weight"], | |
f"{diffusers_resnet_prefix}.conv1.bias": checkpoint[f"{resnet_prefix}.in_layers.2.bias"], | |
f"{diffusers_resnet_prefix}.time_emb_proj.weight": checkpoint[f"{resnet_prefix}.emb_layers.1.weight"], | |
f"{diffusers_resnet_prefix}.time_emb_proj.bias": checkpoint[f"{resnet_prefix}.emb_layers.1.bias"], | |
f"{diffusers_resnet_prefix}.norm2.weight": checkpoint[f"{resnet_prefix}.out_layers.0.weight"], | |
f"{diffusers_resnet_prefix}.norm2.bias": checkpoint[f"{resnet_prefix}.out_layers.0.bias"], | |
f"{diffusers_resnet_prefix}.conv2.weight": checkpoint[f"{resnet_prefix}.out_layers.3.weight"], | |
f"{diffusers_resnet_prefix}.conv2.bias": checkpoint[f"{resnet_prefix}.out_layers.3.bias"], | |
} | |
skip_connection_prefix = f"{resnet_prefix}.skip_connection" | |
if f"{skip_connection_prefix}.weight" in checkpoint: | |
diffusers_checkpoint.update( | |
{ | |
f"{diffusers_resnet_prefix}.conv_shortcut.weight": checkpoint[f"{skip_connection_prefix}.weight"], | |
f"{diffusers_resnet_prefix}.conv_shortcut.bias": checkpoint[f"{skip_connection_prefix}.bias"], | |
} | |
) | |
return diffusers_checkpoint | |
def attention_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix, num_head_channels): | |
diffusers_checkpoint = {} | |
# <original>.norm -> <diffusers>.group_norm | |
diffusers_checkpoint.update( | |
{ | |
f"{diffusers_attention_prefix}.group_norm.weight": checkpoint[f"{attention_prefix}.norm.weight"], | |
f"{diffusers_attention_prefix}.group_norm.bias": checkpoint[f"{attention_prefix}.norm.bias"], | |
} | |
) | |
# <original>.qkv -> <diffusers>.{query, key, value} | |
[q_weight, k_weight, v_weight], [q_bias, k_bias, v_bias] = split_attentions( | |
weight=checkpoint[f"{attention_prefix}.qkv.weight"][:, :, 0], | |
bias=checkpoint[f"{attention_prefix}.qkv.bias"], | |
split=3, | |
chunk_size=num_head_channels, | |
) | |
diffusers_checkpoint.update( | |
{ | |
f"{diffusers_attention_prefix}.to_q.weight": q_weight, | |
f"{diffusers_attention_prefix}.to_q.bias": q_bias, | |
f"{diffusers_attention_prefix}.to_k.weight": k_weight, | |
f"{diffusers_attention_prefix}.to_k.bias": k_bias, | |
f"{diffusers_attention_prefix}.to_v.weight": v_weight, | |
f"{diffusers_attention_prefix}.to_v.bias": v_bias, | |
} | |
) | |
# <original>.encoder_kv -> <diffusers>.{context_key, context_value} | |
[encoder_k_weight, encoder_v_weight], [encoder_k_bias, encoder_v_bias] = split_attentions( | |
weight=checkpoint[f"{attention_prefix}.encoder_kv.weight"][:, :, 0], | |
bias=checkpoint[f"{attention_prefix}.encoder_kv.bias"], | |
split=2, | |
chunk_size=num_head_channels, | |
) | |
diffusers_checkpoint.update( | |
{ | |
f"{diffusers_attention_prefix}.add_k_proj.weight": encoder_k_weight, | |
f"{diffusers_attention_prefix}.add_k_proj.bias": encoder_k_bias, | |
f"{diffusers_attention_prefix}.add_v_proj.weight": encoder_v_weight, | |
f"{diffusers_attention_prefix}.add_v_proj.bias": encoder_v_bias, | |
} | |
) | |
# <original>.proj_out (1d conv) -> <diffusers>.proj_attn (linear) | |
diffusers_checkpoint.update( | |
{ | |
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{attention_prefix}.proj_out.weight"][ | |
:, :, 0 | |
], | |
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{attention_prefix}.proj_out.bias"], | |
} | |
) | |
return diffusers_checkpoint | |
# TODO maybe document and/or can do more efficiently (build indices in for loop and extract once for each split?) | |
def split_attentions(*, weight, bias, split, chunk_size): | |
weights = [None] * split | |
biases = [None] * split | |
weights_biases_idx = 0 | |
for starting_row_index in range(0, weight.shape[0], chunk_size): | |
row_indices = torch.arange(starting_row_index, starting_row_index + chunk_size) | |
weight_rows = weight[row_indices, :] | |
bias_rows = bias[row_indices] | |
if weights[weights_biases_idx] is None: | |
assert weights[weights_biases_idx] is None | |
weights[weights_biases_idx] = weight_rows | |
biases[weights_biases_idx] = bias_rows | |
else: | |
assert weights[weights_biases_idx] is not None | |
weights[weights_biases_idx] = torch.concat([weights[weights_biases_idx], weight_rows]) | |
biases[weights_biases_idx] = torch.concat([biases[weights_biases_idx], bias_rows]) | |
weights_biases_idx = (weights_biases_idx + 1) % split | |
return weights, biases | |
# done unet utils | |
# Driver functions | |
def text_encoder(): | |
print("loading CLIP text encoder") | |
clip_name = "openai/clip-vit-large-patch14" | |
# sets pad_value to 0 | |
pad_token = "!" | |
tokenizer_model = CLIPTokenizer.from_pretrained(clip_name, pad_token=pad_token, device_map="auto") | |
assert tokenizer_model.convert_tokens_to_ids(pad_token) == 0 | |
text_encoder_model = CLIPTextModelWithProjection.from_pretrained( | |
clip_name, | |
# `CLIPTextModel` does not support device_map="auto" | |
# device_map="auto" | |
) | |
print("done loading CLIP text encoder") | |
return text_encoder_model, tokenizer_model | |
def prior(*, args, checkpoint_map_location): | |
print("loading prior") | |
prior_checkpoint = torch.load(args.prior_checkpoint_path, map_location=checkpoint_map_location) | |
prior_checkpoint = prior_checkpoint["state_dict"] | |
clip_stats_checkpoint = torch.load(args.clip_stat_path, map_location=checkpoint_map_location) | |
prior_model = prior_model_from_original_config() | |
prior_diffusers_checkpoint = prior_original_checkpoint_to_diffusers_checkpoint( | |
prior_model, prior_checkpoint, clip_stats_checkpoint | |
) | |
del prior_checkpoint | |
del clip_stats_checkpoint | |
load_checkpoint_to_model(prior_diffusers_checkpoint, prior_model, strict=True) | |
print("done loading prior") | |
return prior_model | |
def decoder(*, args, checkpoint_map_location): | |
print("loading decoder") | |
decoder_checkpoint = torch.load(args.decoder_checkpoint_path, map_location=checkpoint_map_location) | |
decoder_checkpoint = decoder_checkpoint["state_dict"] | |
decoder_model = decoder_model_from_original_config() | |
decoder_diffusers_checkpoint = decoder_original_checkpoint_to_diffusers_checkpoint( | |
decoder_model, decoder_checkpoint | |
) | |
# text proj interlude | |
# The original decoder implementation includes a set of parameters that are used | |
# for creating the `encoder_hidden_states` which are what the U-net is conditioned | |
# on. The diffusers conditional unet directly takes the encoder_hidden_states. We pull | |
# the parameters into the UnCLIPTextProjModel class | |
text_proj_model = text_proj_from_original_config() | |
text_proj_checkpoint = text_proj_original_checkpoint_to_diffusers_checkpoint(decoder_checkpoint) | |
load_checkpoint_to_model(text_proj_checkpoint, text_proj_model, strict=True) | |
# done text proj interlude | |
del decoder_checkpoint | |
load_checkpoint_to_model(decoder_diffusers_checkpoint, decoder_model, strict=True) | |
print("done loading decoder") | |
return decoder_model, text_proj_model | |
def super_res_unet(*, args, checkpoint_map_location): | |
print("loading super resolution unet") | |
super_res_checkpoint = torch.load(args.super_res_unet_checkpoint_path, map_location=checkpoint_map_location) | |
super_res_checkpoint = super_res_checkpoint["state_dict"] | |
# model_first_steps | |
super_res_first_model = super_res_unet_first_steps_model_from_original_config() | |
super_res_first_steps_checkpoint = super_res_unet_first_steps_original_checkpoint_to_diffusers_checkpoint( | |
super_res_first_model, super_res_checkpoint | |
) | |
# model_last_step | |
super_res_last_model = super_res_unet_last_step_model_from_original_config() | |
super_res_last_step_checkpoint = super_res_unet_last_step_original_checkpoint_to_diffusers_checkpoint( | |
super_res_last_model, super_res_checkpoint | |
) | |
del super_res_checkpoint | |
load_checkpoint_to_model(super_res_first_steps_checkpoint, super_res_first_model, strict=True) | |
load_checkpoint_to_model(super_res_last_step_checkpoint, super_res_last_model, strict=True) | |
print("done loading super resolution unet") | |
return super_res_first_model, super_res_last_model | |
def load_checkpoint_to_model(checkpoint, model, strict=False): | |
with tempfile.NamedTemporaryFile() as file: | |
torch.save(checkpoint, file.name) | |
del checkpoint | |
if strict: | |
model.load_state_dict(torch.load(file.name), strict=True) | |
else: | |
load_checkpoint_and_dispatch(model, file.name, device_map="auto") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") | |
parser.add_argument( | |
"--prior_checkpoint_path", | |
default=None, | |
type=str, | |
required=True, | |
help="Path to the prior checkpoint to convert.", | |
) | |
parser.add_argument( | |
"--decoder_checkpoint_path", | |
default=None, | |
type=str, | |
required=True, | |
help="Path to the decoder checkpoint to convert.", | |
) | |
parser.add_argument( | |
"--super_res_unet_checkpoint_path", | |
default=None, | |
type=str, | |
required=True, | |
help="Path to the super resolution checkpoint to convert.", | |
) | |
parser.add_argument( | |
"--clip_stat_path", default=None, type=str, required=True, help="Path to the clip stats checkpoint to convert." | |
) | |
parser.add_argument( | |
"--checkpoint_load_device", | |
default="cpu", | |
type=str, | |
required=False, | |
help="The device passed to `map_location` when loading checkpoints.", | |
) | |
parser.add_argument( | |
"--debug", | |
default=None, | |
type=str, | |
required=False, | |
help="Only run a specific stage of the convert script. Used for debugging", | |
) | |
args = parser.parse_args() | |
print(f"loading checkpoints to {args.checkpoint_load_device}") | |
checkpoint_map_location = torch.device(args.checkpoint_load_device) | |
if args.debug is not None: | |
print(f"debug: only executing {args.debug}") | |
if args.debug is None: | |
text_encoder_model, tokenizer_model = text_encoder() | |
prior_model = prior(args=args, checkpoint_map_location=checkpoint_map_location) | |
decoder_model, text_proj_model = decoder(args=args, checkpoint_map_location=checkpoint_map_location) | |
super_res_first_model, super_res_last_model = super_res_unet( | |
args=args, checkpoint_map_location=checkpoint_map_location | |
) | |
prior_scheduler = UnCLIPScheduler( | |
variance_type="fixed_small_log", | |
prediction_type="sample", | |
num_train_timesteps=1000, | |
clip_sample_range=5.0, | |
) | |
decoder_scheduler = UnCLIPScheduler( | |
variance_type="learned_range", | |
prediction_type="epsilon", | |
num_train_timesteps=1000, | |
) | |
super_res_scheduler = UnCLIPScheduler( | |
variance_type="fixed_small_log", | |
prediction_type="epsilon", | |
num_train_timesteps=1000, | |
) | |
print(f"saving Kakao Brain unCLIP to {args.dump_path}") | |
pipe = UnCLIPPipeline( | |
prior=prior_model, | |
decoder=decoder_model, | |
text_proj=text_proj_model, | |
tokenizer=tokenizer_model, | |
text_encoder=text_encoder_model, | |
super_res_first=super_res_first_model, | |
super_res_last=super_res_last_model, | |
prior_scheduler=prior_scheduler, | |
decoder_scheduler=decoder_scheduler, | |
super_res_scheduler=super_res_scheduler, | |
) | |
pipe.save_pretrained(args.dump_path) | |
print("done writing Kakao Brain unCLIP") | |
elif args.debug == "text_encoder": | |
text_encoder_model, tokenizer_model = text_encoder() | |
elif args.debug == "prior": | |
prior_model = prior(args=args, checkpoint_map_location=checkpoint_map_location) | |
elif args.debug == "decoder": | |
decoder_model, text_proj_model = decoder(args=args, checkpoint_map_location=checkpoint_map_location) | |
elif args.debug == "super_res_unet": | |
super_res_first_model, super_res_last_model = super_res_unet( | |
args=args, checkpoint_map_location=checkpoint_map_location | |
) | |
else: | |
raise ValueError(f"unknown debug value : {args.debug}") | |