Spaces:
Running
on
A10G
Running
on
A10G
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import os | |
import shutil | |
from pathlib import Path | |
import onnx | |
import torch | |
from packaging import version | |
from torch.onnx import export | |
from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline | |
is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") | |
def onnx_export( | |
model, | |
model_args: tuple, | |
output_path: Path, | |
ordered_input_names, | |
output_names, | |
dynamic_axes, | |
opset, | |
use_external_data_format=False, | |
): | |
output_path.parent.mkdir(parents=True, exist_ok=True) | |
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, | |
# so we check the torch version for backwards compatibility | |
if is_torch_less_than_1_11: | |
export( | |
model, | |
model_args, | |
f=output_path.as_posix(), | |
input_names=ordered_input_names, | |
output_names=output_names, | |
dynamic_axes=dynamic_axes, | |
do_constant_folding=True, | |
use_external_data_format=use_external_data_format, | |
enable_onnx_checker=True, | |
opset_version=opset, | |
) | |
else: | |
export( | |
model, | |
model_args, | |
f=output_path.as_posix(), | |
input_names=ordered_input_names, | |
output_names=output_names, | |
dynamic_axes=dynamic_axes, | |
do_constant_folding=True, | |
opset_version=opset, | |
) | |
def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = False): | |
dtype = torch.float16 if fp16 else torch.float32 | |
if fp16 and torch.cuda.is_available(): | |
device = "cuda" | |
elif fp16 and not torch.cuda.is_available(): | |
raise ValueError("`float16` model export is only supported on GPUs with CUDA") | |
else: | |
device = "cpu" | |
pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=dtype).to(device) | |
output_path = Path(output_path) | |
# TEXT ENCODER | |
num_tokens = pipeline.text_encoder.config.max_position_embeddings | |
text_hidden_size = pipeline.text_encoder.config.hidden_size | |
text_input = pipeline.tokenizer( | |
"A sample prompt", | |
padding="max_length", | |
max_length=pipeline.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
onnx_export( | |
pipeline.text_encoder, | |
# casting to torch.int32 until the CLIP fix is released: https://github.com/huggingface/transformers/pull/18515/files | |
model_args=(text_input.input_ids.to(device=device, dtype=torch.int32)), | |
output_path=output_path / "text_encoder" / "model.onnx", | |
ordered_input_names=["input_ids"], | |
output_names=["last_hidden_state", "pooler_output"], | |
dynamic_axes={ | |
"input_ids": {0: "batch", 1: "sequence"}, | |
}, | |
opset=opset, | |
) | |
del pipeline.text_encoder | |
# UNET | |
unet_in_channels = pipeline.unet.config.in_channels | |
unet_sample_size = pipeline.unet.config.sample_size | |
unet_path = output_path / "unet" / "model.onnx" | |
onnx_export( | |
pipeline.unet, | |
model_args=( | |
torch.randn(2, unet_in_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype), | |
torch.randn(2).to(device=device, dtype=dtype), | |
torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype), | |
False, | |
), | |
output_path=unet_path, | |
ordered_input_names=["sample", "timestep", "encoder_hidden_states", "return_dict"], | |
output_names=["out_sample"], # has to be different from "sample" for correct tracing | |
dynamic_axes={ | |
"sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, | |
"timestep": {0: "batch"}, | |
"encoder_hidden_states": {0: "batch", 1: "sequence"}, | |
}, | |
opset=opset, | |
use_external_data_format=True, # UNet is > 2GB, so the weights need to be split | |
) | |
unet_model_path = str(unet_path.absolute().as_posix()) | |
unet_dir = os.path.dirname(unet_model_path) | |
unet = onnx.load(unet_model_path) | |
# clean up existing tensor files | |
shutil.rmtree(unet_dir) | |
os.mkdir(unet_dir) | |
# collate external tensor files into one | |
onnx.save_model( | |
unet, | |
unet_model_path, | |
save_as_external_data=True, | |
all_tensors_to_one_file=True, | |
location="weights.pb", | |
convert_attribute=False, | |
) | |
del pipeline.unet | |
# VAE ENCODER | |
vae_encoder = pipeline.vae | |
vae_in_channels = vae_encoder.config.in_channels | |
vae_sample_size = vae_encoder.config.sample_size | |
# need to get the raw tensor output (sample) from the encoder | |
vae_encoder.forward = lambda sample, return_dict: vae_encoder.encode(sample, return_dict)[0].sample() | |
onnx_export( | |
vae_encoder, | |
model_args=( | |
torch.randn(1, vae_in_channels, vae_sample_size, vae_sample_size).to(device=device, dtype=dtype), | |
False, | |
), | |
output_path=output_path / "vae_encoder" / "model.onnx", | |
ordered_input_names=["sample", "return_dict"], | |
output_names=["latent_sample"], | |
dynamic_axes={ | |
"sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, | |
}, | |
opset=opset, | |
) | |
# VAE DECODER | |
vae_decoder = pipeline.vae | |
vae_latent_channels = vae_decoder.config.latent_channels | |
vae_out_channels = vae_decoder.config.out_channels | |
# forward only through the decoder part | |
vae_decoder.forward = vae_encoder.decode | |
onnx_export( | |
vae_decoder, | |
model_args=( | |
torch.randn(1, vae_latent_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype), | |
False, | |
), | |
output_path=output_path / "vae_decoder" / "model.onnx", | |
ordered_input_names=["latent_sample", "return_dict"], | |
output_names=["sample"], | |
dynamic_axes={ | |
"latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, | |
}, | |
opset=opset, | |
) | |
del pipeline.vae | |
# SAFETY CHECKER | |
if pipeline.safety_checker is not None: | |
safety_checker = pipeline.safety_checker | |
clip_num_channels = safety_checker.config.vision_config.num_channels | |
clip_image_size = safety_checker.config.vision_config.image_size | |
safety_checker.forward = safety_checker.forward_onnx | |
onnx_export( | |
pipeline.safety_checker, | |
model_args=( | |
torch.randn( | |
1, | |
clip_num_channels, | |
clip_image_size, | |
clip_image_size, | |
).to(device=device, dtype=dtype), | |
torch.randn(1, vae_sample_size, vae_sample_size, vae_out_channels).to(device=device, dtype=dtype), | |
), | |
output_path=output_path / "safety_checker" / "model.onnx", | |
ordered_input_names=["clip_input", "images"], | |
output_names=["out_images", "has_nsfw_concepts"], | |
dynamic_axes={ | |
"clip_input": {0: "batch", 1: "channels", 2: "height", 3: "width"}, | |
"images": {0: "batch", 1: "height", 2: "width", 3: "channels"}, | |
}, | |
opset=opset, | |
) | |
del pipeline.safety_checker | |
safety_checker = OnnxRuntimeModel.from_pretrained(output_path / "safety_checker") | |
feature_extractor = pipeline.feature_extractor | |
else: | |
safety_checker = None | |
feature_extractor = None | |
onnx_pipeline = OnnxStableDiffusionPipeline( | |
vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_encoder"), | |
vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_decoder"), | |
text_encoder=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder"), | |
tokenizer=pipeline.tokenizer, | |
unet=OnnxRuntimeModel.from_pretrained(output_path / "unet"), | |
scheduler=pipeline.scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
requires_safety_checker=safety_checker is not None, | |
) | |
onnx_pipeline.save_pretrained(output_path) | |
print("ONNX pipeline saved to", output_path) | |
del pipeline | |
del onnx_pipeline | |
_ = OnnxStableDiffusionPipeline.from_pretrained(output_path, provider="CPUExecutionProvider") | |
print("ONNX pipeline is loadable") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--model_path", | |
type=str, | |
required=True, | |
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", | |
) | |
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") | |
parser.add_argument( | |
"--opset", | |
default=14, | |
type=int, | |
help="The version of the ONNX operator set to use.", | |
) | |
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") | |
args = parser.parse_args() | |
convert_models(args.model_path, args.output_path, args.opset, args.fp16) | |