File size: 6,985 Bytes
ffead1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch

from diffusers import (
    AudioDiffusionPipeline,
    AutoencoderKL,
    DDIMScheduler,
    DDPMScheduler,
    DiffusionPipeline,
    Mel,
    UNet2DConditionModel,
    UNet2DModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu


torch.backends.cuda.matmul.allow_tf32 = False


class PipelineFastTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    @property
    def dummy_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            sample_size=(32, 64),
            in_channels=1,
            out_channels=1,
            layers_per_block=2,
            block_out_channels=(128, 128),
            down_block_types=("AttnDownBlock2D", "DownBlock2D"),
            up_block_types=("UpBlock2D", "AttnUpBlock2D"),
        )
        return model

    @property
    def dummy_unet_condition(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            sample_size=(64, 32),
            in_channels=1,
            out_channels=1,
            layers_per_block=2,
            block_out_channels=(128, 128),
            down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
            up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"),
            cross_attention_dim=10,
        )
        return model

    @property
    def dummy_vqvae_and_unet(self):
        torch.manual_seed(0)
        vqvae = AutoencoderKL(
            sample_size=(128, 64),
            in_channels=1,
            out_channels=1,
            latent_channels=1,
            layers_per_block=2,
            block_out_channels=(128, 128),
            down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D"),
            up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D"),
        )
        unet = UNet2DModel(
            sample_size=(64, 32),
            in_channels=1,
            out_channels=1,
            layers_per_block=2,
            block_out_channels=(128, 128),
            down_block_types=("AttnDownBlock2D", "DownBlock2D"),
            up_block_types=("UpBlock2D", "AttnUpBlock2D"),
        )
        return vqvae, unet

    @slow
    def test_audio_diffusion(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        mel = Mel()

        scheduler = DDPMScheduler()
        pipe = AudioDiffusionPipeline(vqvae=None, unet=self.dummy_unet, mel=mel, scheduler=scheduler)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device=device).manual_seed(42)
        output = pipe(generator=generator, steps=4)
        audio = output.audios[0]
        image = output.images[0]

        generator = torch.Generator(device=device).manual_seed(42)
        output = pipe(generator=generator, steps=4, return_dict=False)
        image_from_tuple = output[0][0]

        assert audio.shape == (1, (self.dummy_unet.sample_size[1] - 1) * mel.hop_length)
        assert image.height == self.dummy_unet.sample_size[0] and image.width == self.dummy_unet.sample_size[1]
        image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
        image_from_tuple_slice = np.frombuffer(image_from_tuple.tobytes(), dtype="uint8")[:10]
        expected_slice = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127])

        assert np.abs(image_slice.flatten() - expected_slice).max() == 0
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() == 0

        scheduler = DDIMScheduler()
        dummy_vqvae_and_unet = self.dummy_vqvae_and_unet
        pipe = AudioDiffusionPipeline(
            vqvae=self.dummy_vqvae_and_unet[0], unet=dummy_vqvae_and_unet[1], mel=mel, scheduler=scheduler
        )
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        np.random.seed(0)
        raw_audio = np.random.uniform(-1, 1, ((dummy_vqvae_and_unet[0].sample_size[1] - 1) * mel.hop_length,))
        generator = torch.Generator(device=device).manual_seed(42)
        output = pipe(raw_audio=raw_audio, generator=generator, start_step=5, steps=10)
        image = output.images[0]

        assert (
            image.height == self.dummy_vqvae_and_unet[0].sample_size[0]
            and image.width == self.dummy_vqvae_and_unet[0].sample_size[1]
        )
        image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
        expected_slice = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121])

        assert np.abs(image_slice.flatten() - expected_slice).max() == 0

        dummy_unet_condition = self.dummy_unet_condition
        pipe = AudioDiffusionPipeline(
            vqvae=self.dummy_vqvae_and_unet[0], unet=dummy_unet_condition, mel=mel, scheduler=scheduler
        )

        np.random.seed(0)
        encoding = torch.rand((1, 1, 10))
        output = pipe(generator=generator, encoding=encoding)
        image = output.images[0]
        image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
        expected_slice = np.array([120, 139, 147, 123, 124, 96, 115, 121, 126, 144])

        assert np.abs(image_slice.flatten() - expected_slice).max() == 0


@slow
@require_torch_gpu
class PipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_audio_diffusion(self):
        device = torch_device

        pipe = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256")
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device=device).manual_seed(42)
        output = pipe(generator=generator)
        audio = output.audios[0]
        image = output.images[0]

        assert audio.shape == (1, (pipe.unet.sample_size[1] - 1) * pipe.mel.hop_length)
        assert image.height == pipe.unet.sample_size[0] and image.width == pipe.unet.sample_size[1]
        image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
        expected_slice = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26])

        assert np.abs(image_slice.flatten() - expected_slice).max() == 0