Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,343 Bytes
ffead1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
from inspect import isfunction
import math
import torch
import torch.nn.functional as F
from torch import nn
from einops import rearrange
from audioldm.latent_diffusion.util import checkpoint
def exists(val):
return val is not None
def uniq(arr):
return {el: True for el in arr}.keys()
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def max_neg_value(t):
return -torch.finfo(t.dtype).max
def init_(tensor):
dim = tensor.shape[-1]
std = 1 / math.sqrt(dim)
tensor.uniform_(-std, std)
return tensor
# feedforward
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * F.gelu(gate)
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = (
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
if not glu
else GEGLU(dim, inner_dim)
)
self.net = nn.Sequential(
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
)
def forward(self, x):
return self.net(x)
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def Normalize(in_channels):
return torch.nn.GroupNorm(
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
)
class LinearAttention(nn.Module):
def __init__(self, dim, heads=4, dim_head=32):
super().__init__()
self.heads = heads
hidden_dim = dim_head * heads
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.to_qkv(x)
q, k, v = rearrange(
qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3
)
k = k.softmax(dim=-1)
context = torch.einsum("bhdn,bhen->bhde", k, v)
out = torch.einsum("bhde,bhdn->bhen", context, q)
out = rearrange(
out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w
)
return self.to_out(out)
class SpatialSelfAttention(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.k = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.v = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.proj_out = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
q = rearrange(q, "b c h w -> b (h w) c")
k = rearrange(k, "b c h w -> b c (h w)")
w_ = torch.einsum("bij,bjk->bik", q, k)
w_ = w_ * (int(c) ** (-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = rearrange(v, "b c h w -> b c (h w)")
w_ = rearrange(w_, "b i j -> b j i")
h_ = torch.einsum("bij,bjk->bik", v, w_)
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
h_ = self.proj_out(h_)
return x + h_
class CrossAttention(nn.Module):
"""
### Cross Attention Layer
This falls-back to self-attention when conditional embeddings are not specified.
"""
# use_flash_attention: bool = True
use_flash_attention: bool = False
def __init__(
self,
query_dim,
context_dim=None,
heads=8,
dim_head=64,
dropout=0.0,
is_inplace: bool = True,
):
# def __init__(self, d_model: int, d_cond: int, n_heads: int, d_head: int, is_inplace: bool = True):
"""
:param d_model: is the input embedding size
:param n_heads: is the number of attention heads
:param d_head: is the size of a attention head
:param d_cond: is the size of the conditional embeddings
:param is_inplace: specifies whether to perform the attention softmax computation inplace to
save memory
"""
super().__init__()
self.is_inplace = is_inplace
self.n_heads = heads
self.d_head = dim_head
# Attention scaling factor
self.scale = dim_head**-0.5
# The normal self-attention layer
if context_dim is None:
context_dim = query_dim
# Query, key and value mappings
d_attn = dim_head * heads
self.to_q = nn.Linear(query_dim, d_attn, bias=False)
self.to_k = nn.Linear(context_dim, d_attn, bias=False)
self.to_v = nn.Linear(context_dim, d_attn, bias=False)
# Final linear layer
self.to_out = nn.Sequential(nn.Linear(d_attn, query_dim), nn.Dropout(dropout))
# Setup [flash attention](https://github.com/HazyResearch/flash-attention).
# Flash attention is only used if it's installed
# and `CrossAttention.use_flash_attention` is set to `True`.
try:
# You can install flash attention by cloning their Github repo,
# [https://github.com/HazyResearch/flash-attention](https://github.com/HazyResearch/flash-attention)
# and then running `python setup.py install`
from flash_attn.flash_attention import FlashAttention
self.flash = FlashAttention()
# Set the scale for scaled dot-product attention.
self.flash.softmax_scale = self.scale
# Set to `None` if it's not installed
except ImportError:
self.flash = None
def forward(self, x, context=None, mask=None):
"""
:param x: are the input embeddings of shape `[batch_size, height * width, d_model]`
:param cond: is the conditional embeddings of shape `[batch_size, n_cond, d_cond]`
"""
# If `cond` is `None` we perform self attention
has_cond = context is not None
if not has_cond:
context = x
# Get query, key and value vectors
q = self.to_q(x)
k = self.to_k(context)
v = self.to_v(context)
# Use flash attention if it's available and the head size is less than or equal to `128`
if (
CrossAttention.use_flash_attention
and self.flash is not None
and not has_cond
and self.d_head <= 128
):
return self.flash_attention(q, k, v)
# Otherwise, fallback to normal attention
else:
return self.normal_attention(q, k, v)
def flash_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
"""
#### Flash Attention
:param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
:param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
:param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
"""
# Get batch size and number of elements along sequence axis (`width * height`)
batch_size, seq_len, _ = q.shape
# Stack `q`, `k`, `v` vectors for flash attention, to get a single tensor of
# shape `[batch_size, seq_len, 3, n_heads * d_head]`
qkv = torch.stack((q, k, v), dim=2)
# Split the heads
qkv = qkv.view(batch_size, seq_len, 3, self.n_heads, self.d_head)
# Flash attention works for head sizes `32`, `64` and `128`, so we have to pad the heads to
# fit this size.
if self.d_head <= 32:
pad = 32 - self.d_head
elif self.d_head <= 64:
pad = 64 - self.d_head
elif self.d_head <= 128:
pad = 128 - self.d_head
else:
raise ValueError(f"Head size ${self.d_head} too large for Flash Attention")
# Pad the heads
if pad:
qkv = torch.cat(
(qkv, qkv.new_zeros(batch_size, seq_len, 3, self.n_heads, pad)), dim=-1
)
# Compute attention
# $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$
# This gives a tensor of shape `[batch_size, seq_len, n_heads, d_padded]`
# TODO here I add the dtype changing
out, _ = self.flash(qkv.type(torch.float16))
# Truncate the extra head size
out = out[:, :, :, : self.d_head].float()
# Reshape to `[batch_size, seq_len, n_heads * d_head]`
out = out.reshape(batch_size, seq_len, self.n_heads * self.d_head)
# Map to `[batch_size, height * width, d_model]` with a linear layer
return self.to_out(out)
def normal_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
"""
#### Normal Attention
:param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
:param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
:param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
"""
# Split them to heads of shape `[batch_size, seq_len, n_heads, d_head]`
q = q.view(*q.shape[:2], self.n_heads, -1) # [bs, 64, 20, 32]
k = k.view(*k.shape[:2], self.n_heads, -1) # [bs, 1, 20, 32]
v = v.view(*v.shape[:2], self.n_heads, -1)
# Calculate attention $\frac{Q K^\top}{\sqrt{d_{key}}}$
attn = torch.einsum("bihd,bjhd->bhij", q, k) * self.scale
# Compute softmax
# $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)$$
if self.is_inplace:
half = attn.shape[0] // 2
attn[half:] = attn[half:].softmax(dim=-1)
attn[:half] = attn[:half].softmax(dim=-1)
else:
attn = attn.softmax(dim=-1)
# Compute attention output
# $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$
# attn: [bs, 20, 64, 1]
# v: [bs, 1, 20, 32]
out = torch.einsum("bhij,bjhd->bihd", attn, v)
# Reshape to `[batch_size, height * width, n_heads * d_head]`
out = out.reshape(*out.shape[:2], -1)
# Map to `[batch_size, height * width, d_model]` with a linear layer
return self.to_out(out)
# class CrossAttention(nn.Module):
# def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
# super().__init__()
# inner_dim = dim_head * heads
# context_dim = default(context_dim, query_dim)
# self.scale = dim_head ** -0.5
# self.heads = heads
# self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
# self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
# self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
# self.to_out = nn.Sequential(
# nn.Linear(inner_dim, query_dim),
# nn.Dropout(dropout)
# )
# def forward(self, x, context=None, mask=None):
# h = self.heads
# q = self.to_q(x)
# context = default(context, x)
# k = self.to_k(context)
# v = self.to_v(context)
# q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
# sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
# if exists(mask):
# mask = rearrange(mask, 'b ... -> b (...)')
# max_neg_value = -torch.finfo(sim.dtype).max
# mask = repeat(mask, 'b j -> (b h) () j', h=h)
# sim.masked_fill_(~mask, max_neg_value)
# # attention, what we cannot get enough of
# attn = sim.softmax(dim=-1)
# out = einsum('b i j, b j d -> b i d', attn, v)
# out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
# return self.to_out(out)
class BasicTransformerBlock(nn.Module):
def __init__(
self,
dim,
n_heads,
d_head,
dropout=0.0,
context_dim=None,
gated_ff=True,
checkpoint=True,
):
super().__init__()
self.attn1 = CrossAttention(
query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
) # is a self-attention
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
self.attn2 = CrossAttention(
query_dim=dim,
context_dim=context_dim,
heads=n_heads,
dim_head=d_head,
dropout=dropout,
) # is self-attn if context is none
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.norm3 = nn.LayerNorm(dim)
self.checkpoint = checkpoint
def forward(self, x, context=None):
if context is None:
return checkpoint(self._forward, (x,), self.parameters(), self.checkpoint)
else:
return checkpoint(
self._forward, (x, context), self.parameters(), self.checkpoint
)
def _forward(self, x, context=None):
x = self.attn1(self.norm1(x)) + x
x = self.attn2(self.norm2(x), context=context) + x
x = self.ff(self.norm3(x)) + x
return x
class SpatialTransformer(nn.Module):
"""
Transformer block for image-like data.
First, project the input (aka embedding)
and reshape to b, t, d.
Then apply standard transformer action.
Finally, reshape to image
"""
def __init__(
self,
in_channels,
n_heads,
d_head,
depth=1,
dropout=0.0,
context_dim=None,
no_context=False,
):
super().__init__()
if no_context:
context_dim = None
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = Normalize(in_channels)
self.proj_in = nn.Conv2d(
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim
)
for d in range(depth)
]
)
self.proj_out = zero_module(
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
)
def forward(self, x, context=None):
# note: if no context is given, cross-attention defaults to self-attention
b, c, h, w = x.shape
x_in = x
x = self.norm(x)
x = self.proj_in(x)
x = rearrange(x, "b c h w -> b (h w) c")
for block in self.transformer_blocks:
x = block(x, context=context)
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
x = self.proj_out(x)
return x + x_in
|