Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2022 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import unittest | |
import numpy as np | |
import torch | |
from diffusers import DDPMScheduler, MidiProcessor, SpectrogramDiffusionPipeline | |
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, T5FilmDecoder | |
from diffusers.utils import require_torch_gpu, skip_mps, slow, torch_device | |
from diffusers.utils.testing_utils import require_note_seq, require_onnxruntime | |
from ...pipeline_params import TOKENS_TO_AUDIO_GENERATION_BATCH_PARAMS, TOKENS_TO_AUDIO_GENERATION_PARAMS | |
from ...test_pipelines_common import PipelineTesterMixin | |
torch.backends.cuda.matmul.allow_tf32 = False | |
MIDI_FILE = "./tests/fixtures/elise_format0.mid" | |
class SpectrogramDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = SpectrogramDiffusionPipeline | |
required_optional_params = PipelineTesterMixin.required_optional_params - { | |
"callback", | |
"latents", | |
"callback_steps", | |
"output_type", | |
"num_images_per_prompt", | |
} | |
test_attention_slicing = False | |
test_cpu_offload = False | |
batch_params = TOKENS_TO_AUDIO_GENERATION_PARAMS | |
params = TOKENS_TO_AUDIO_GENERATION_BATCH_PARAMS | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
notes_encoder = SpectrogramNotesEncoder( | |
max_length=2048, | |
vocab_size=1536, | |
d_model=768, | |
dropout_rate=0.1, | |
num_layers=1, | |
num_heads=1, | |
d_kv=4, | |
d_ff=2048, | |
feed_forward_proj="gated-gelu", | |
) | |
continuous_encoder = SpectrogramContEncoder( | |
input_dims=128, | |
targets_context_length=256, | |
d_model=768, | |
dropout_rate=0.1, | |
num_layers=1, | |
num_heads=1, | |
d_kv=4, | |
d_ff=2048, | |
feed_forward_proj="gated-gelu", | |
) | |
decoder = T5FilmDecoder( | |
input_dims=128, | |
targets_length=256, | |
max_decoder_noise_time=20000.0, | |
d_model=768, | |
num_layers=1, | |
num_heads=1, | |
d_kv=4, | |
d_ff=2048, | |
dropout_rate=0.1, | |
) | |
scheduler = DDPMScheduler() | |
components = { | |
"notes_encoder": notes_encoder.eval(), | |
"continuous_encoder": continuous_encoder.eval(), | |
"decoder": decoder.eval(), | |
"scheduler": scheduler, | |
"melgan": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"input_tokens": [ | |
[1134, 90, 1135, 1133, 1080, 112, 1132, 1080, 1133, 1079, 133, 1132, 1079, 1133, 1] + [0] * 2033 | |
], | |
"generator": generator, | |
"num_inference_steps": 4, | |
"output_type": "mel", | |
} | |
return inputs | |
def test_spectrogram_diffusion(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
pipe = SpectrogramDiffusionPipeline(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
output = pipe(**inputs) | |
mel = output.audios | |
mel_slice = mel[0, -3:, -3:] | |
assert mel_slice.shape == (3, 3) | |
expected_slice = np.array( | |
[-11.512925, -4.788215, -0.46172905, -2.051715, -10.539147, -10.970963, -9.091634, 4.0, 4.0] | |
) | |
assert np.abs(mel_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_save_load_local(self): | |
return super().test_save_load_local() | |
def test_dict_tuple_outputs_equivalent(self): | |
return super().test_dict_tuple_outputs_equivalent() | |
def test_save_load_optional_components(self): | |
return super().test_save_load_optional_components() | |
def test_attention_slicing_forward_pass(self): | |
return super().test_attention_slicing_forward_pass() | |
def test_inference_batch_single_identical(self): | |
pass | |
def test_inference_batch_consistent(self): | |
pass | |
def test_progress_bar(self): | |
return super().test_progress_bar() | |
class PipelineIntegrationTests(unittest.TestCase): | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_callback(self): | |
# TODO - test that pipeline can decode tokens in a callback | |
# so that music can be played live | |
device = torch_device | |
pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion") | |
melgan = pipe.melgan | |
pipe.melgan = None | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
def callback(step, mel_output): | |
# decode mel to audio | |
audio = melgan(input_features=mel_output.astype(np.float32))[0] | |
assert len(audio[0]) == 81920 * (step + 1) | |
# simulate that audio is played | |
return audio | |
processor = MidiProcessor() | |
input_tokens = processor(MIDI_FILE) | |
input_tokens = input_tokens[:3] | |
generator = torch.manual_seed(0) | |
pipe(input_tokens, num_inference_steps=5, generator=generator, callback=callback, output_type="mel") | |
def test_spectrogram_fast(self): | |
device = torch_device | |
pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion") | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
processor = MidiProcessor() | |
input_tokens = processor(MIDI_FILE) | |
# just run two denoising loops | |
input_tokens = input_tokens[:2] | |
generator = torch.manual_seed(0) | |
output = pipe(input_tokens, num_inference_steps=2, generator=generator) | |
audio = output.audios[0] | |
assert abs(np.abs(audio).sum() - 3612.841) < 1e-1 | |
def test_spectrogram(self): | |
device = torch_device | |
pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion") | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
processor = MidiProcessor() | |
input_tokens = processor(MIDI_FILE) | |
# just run 4 denoising loops | |
input_tokens = input_tokens[:4] | |
generator = torch.manual_seed(0) | |
output = pipe(input_tokens, num_inference_steps=100, generator=generator) | |
audio = output.audios[0] | |
assert abs(np.abs(audio).sum() - 9389.1111) < 5e-2 | |