Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
import argparse | |
import logging | |
import math | |
import os | |
import random | |
from pathlib import Path | |
import jax | |
import jax.numpy as jnp | |
import numpy as np | |
import optax | |
import torch | |
import torch.utils.checkpoint | |
import transformers | |
from datasets import load_dataset | |
from flax import jax_utils | |
from flax.core.frozen_dict import unfreeze | |
from flax.training import train_state | |
from flax.training.common_utils import shard | |
from huggingface_hub import create_repo, upload_folder | |
from PIL import Image | |
from torch.utils.data import IterableDataset | |
from torchvision import transforms | |
from tqdm.auto import tqdm | |
from transformers import CLIPTokenizer, FlaxCLIPTextModel, set_seed | |
from diffusers import ( | |
FlaxAutoencoderKL, | |
FlaxControlNetModel, | |
FlaxDDPMScheduler, | |
FlaxStableDiffusionControlNetPipeline, | |
FlaxUNet2DConditionModel, | |
) | |
from diffusers.utils import check_min_version, is_wandb_available | |
if is_wandb_available(): | |
import wandb | |
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
check_min_version("0.15.0.dev0") | |
logger = logging.getLogger(__name__) | |
def image_grid(imgs, rows, cols): | |
assert len(imgs) == rows * cols | |
w, h = imgs[0].size | |
grid = Image.new("RGB", size=(cols * w, rows * h)) | |
grid_w, grid_h = grid.size | |
for i, img in enumerate(imgs): | |
grid.paste(img, box=(i % cols * w, i // cols * h)) | |
return grid | |
def log_validation(controlnet, controlnet_params, tokenizer, args, rng, weight_dtype): | |
logger.info("Running validation... ") | |
pipeline, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
tokenizer=tokenizer, | |
controlnet=controlnet, | |
safety_checker=None, | |
dtype=weight_dtype, | |
revision=args.revision, | |
from_pt=args.from_pt, | |
) | |
params = jax_utils.replicate(params) | |
params["controlnet"] = controlnet_params | |
num_samples = jax.device_count() | |
prng_seed = jax.random.split(rng, jax.device_count()) | |
if len(args.validation_image) == len(args.validation_prompt): | |
validation_images = args.validation_image | |
validation_prompts = args.validation_prompt | |
elif len(args.validation_image) == 1: | |
validation_images = args.validation_image * len(args.validation_prompt) | |
validation_prompts = args.validation_prompt | |
elif len(args.validation_prompt) == 1: | |
validation_images = args.validation_image | |
validation_prompts = args.validation_prompt * len(args.validation_image) | |
else: | |
raise ValueError( | |
"number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`" | |
) | |
image_logs = [] | |
for validation_prompt, validation_image in zip(validation_prompts, validation_images): | |
prompts = num_samples * [validation_prompt] | |
prompt_ids = pipeline.prepare_text_inputs(prompts) | |
prompt_ids = shard(prompt_ids) | |
validation_image = Image.open(validation_image).convert("RGB") | |
processed_image = pipeline.prepare_image_inputs(num_samples * [validation_image]) | |
processed_image = shard(processed_image) | |
images = pipeline( | |
prompt_ids=prompt_ids, | |
image=processed_image, | |
params=params, | |
prng_seed=prng_seed, | |
num_inference_steps=50, | |
jit=True, | |
).images | |
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) | |
images = pipeline.numpy_to_pil(images) | |
image_logs.append( | |
{"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt} | |
) | |
if args.report_to == "wandb": | |
formatted_images = [] | |
for log in image_logs: | |
images = log["images"] | |
validation_prompt = log["validation_prompt"] | |
validation_image = log["validation_image"] | |
formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning")) | |
for image in images: | |
image = wandb.Image(image, caption=validation_prompt) | |
formatted_images.append(image) | |
wandb.log({"validation": formatted_images}) | |
else: | |
logger.warn(f"image logging not implemented for {args.report_to}") | |
return image_logs | |
def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None): | |
img_str = "" | |
for i, log in enumerate(image_logs): | |
images = log["images"] | |
validation_prompt = log["validation_prompt"] | |
validation_image = log["validation_image"] | |
validation_image.save(os.path.join(repo_folder, "image_control.png")) | |
img_str += f"prompt: {validation_prompt}\n" | |
images = [validation_image] + images | |
image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png")) | |
img_str += f"![images_{i})](./images_{i}.png)\n" | |
yaml = f""" | |
--- | |
license: creativeml-openrail-m | |
base_model: {base_model} | |
tags: | |
- stable-diffusion | |
- stable-diffusion-diffusers | |
- text-to-image | |
- diffusers | |
- controlnet | |
inference: true | |
--- | |
""" | |
model_card = f""" | |
# controlnet- {repo_id} | |
These are controlnet weights trained on {base_model} with new type of conditioning. You can find some example images in the following. \n | |
{img_str} | |
""" | |
with open(os.path.join(repo_folder, "README.md"), "w") as f: | |
f.write(yaml + model_card) | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--controlnet_model_name_or_path", | |
type=str, | |
default=None, | |
help="Path to pretrained controlnet model or model identifier from huggingface.co/models." | |
" If not specified controlnet weights are initialized from unet.", | |
) | |
parser.add_argument( | |
"--revision", | |
type=str, | |
default=None, | |
help="Revision of pretrained model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--from_pt", | |
action="store_true", | |
help="Load the pretrained model from a PyTorch checkpoint.", | |
) | |
parser.add_argument( | |
"--tokenizer_name", | |
type=str, | |
default=None, | |
help="Pretrained tokenizer name or path if not the same as model_name", | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="controlnet-model", | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument( | |
"--cache_dir", | |
type=str, | |
default=None, | |
help="The directory where the downloaded models and datasets will be stored.", | |
) | |
parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.") | |
parser.add_argument( | |
"--resolution", | |
type=int, | |
default=512, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument( | |
"--train_batch_size", type=int, default=1, help="Batch size (per device) for the training dataloader." | |
) | |
parser.add_argument("--num_train_epochs", type=int, default=100) | |
parser.add_argument( | |
"--max_train_steps", | |
type=int, | |
default=None, | |
help="Total number of training steps to perform.", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=1e-4, | |
help="Initial learning rate (after the potential warmup period) to use.", | |
) | |
parser.add_argument( | |
"--scale_lr", | |
action="store_true", | |
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
) | |
parser.add_argument( | |
"--lr_scheduler", | |
type=str, | |
default="constant", | |
help=( | |
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
' "constant", "constant_with_warmup"]' | |
), | |
) | |
parser.add_argument( | |
"--dataloader_num_workers", | |
type=int, | |
default=0, | |
help=( | |
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
), | |
) | |
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
parser.add_argument( | |
"--hub_model_id", | |
type=str, | |
default=None, | |
help="The name of the repository to keep in sync with the local `output_dir`.", | |
) | |
parser.add_argument( | |
"--logging_dir", | |
type=str, | |
default="logs", | |
help=( | |
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
), | |
) | |
parser.add_argument( | |
"--logging_steps", | |
type=int, | |
default=100, | |
help=("log training metric every X steps to `--report_t`"), | |
) | |
parser.add_argument( | |
"--report_to", | |
type=str, | |
default="tensorboard", | |
help=( | |
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
), | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default="no", | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose" | |
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." | |
"and an Nvidia Ampere GPU." | |
), | |
) | |
parser.add_argument( | |
"--dataset_name", | |
type=str, | |
default=None, | |
help=( | |
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," | |
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," | |
" or to a folder containing files that 🤗 Datasets can understand." | |
), | |
) | |
parser.add_argument("--streaming", action="store_true", help="To stream a large dataset from Hub.") | |
parser.add_argument( | |
"--dataset_config_name", | |
type=str, | |
default=None, | |
help="The config of the Dataset, leave as None if there's only one config.", | |
) | |
parser.add_argument( | |
"--train_data_dir", | |
type=str, | |
default=None, | |
help=( | |
"A folder containing the training data. Folder contents must follow the structure described in" | |
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" | |
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified." | |
), | |
) | |
parser.add_argument( | |
"--image_column", type=str, default="image", help="The column of the dataset containing the target image." | |
) | |
parser.add_argument( | |
"--conditioning_image_column", | |
type=str, | |
default="conditioning_image", | |
help="The column of the dataset containing the controlnet conditioning image.", | |
) | |
parser.add_argument( | |
"--caption_column", | |
type=str, | |
default="text", | |
help="The column of the dataset containing a caption or a list of captions.", | |
) | |
parser.add_argument( | |
"--max_train_samples", | |
type=int, | |
default=None, | |
help=( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set. Needed if `streaming` is set to True." | |
), | |
) | |
parser.add_argument( | |
"--proportion_empty_prompts", | |
type=float, | |
default=0, | |
help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", | |
) | |
parser.add_argument( | |
"--validation_prompt", | |
type=str, | |
default=None, | |
nargs="+", | |
help=( | |
"A set of prompts evaluated every `--validation_steps` and logged to `--report_to`." | |
" Provide either a matching number of `--validation_image`s, a single `--validation_image`" | |
" to be used with all prompts, or a single prompt that will be used with all `--validation_image`s." | |
), | |
) | |
parser.add_argument( | |
"--validation_image", | |
type=str, | |
default=None, | |
nargs="+", | |
help=( | |
"A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`" | |
" and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a" | |
" a single `--validation_prompt` to be used with all `--validation_image`s, or a single" | |
" `--validation_image` that will be used with all `--validation_prompt`s." | |
), | |
) | |
parser.add_argument( | |
"--validation_steps", | |
type=int, | |
default=100, | |
help=( | |
"Run validation every X steps. Validation consists of running the prompt" | |
" `args.validation_prompt` and logging the images." | |
), | |
) | |
parser.add_argument( | |
"--tracker_project_name", | |
type=str, | |
default="train_controlnet_flax", | |
help=("The `project` argument passed to wandb"), | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", type=int, default=1, help="Number of steps to accumulate gradients over" | |
) | |
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
args = parser.parse_args() | |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
if env_local_rank != -1 and env_local_rank != args.local_rank: | |
args.local_rank = env_local_rank | |
# Sanity checks | |
if args.dataset_name is None and args.train_data_dir is None: | |
raise ValueError("Need either a dataset name or a training folder.") | |
if args.dataset_name is not None and args.train_data_dir is not None: | |
raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`") | |
if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1: | |
raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].") | |
if args.validation_prompt is not None and args.validation_image is None: | |
raise ValueError("`--validation_image` must be set if `--validation_prompt` is set") | |
if args.validation_prompt is None and args.validation_image is not None: | |
raise ValueError("`--validation_prompt` must be set if `--validation_image` is set") | |
if ( | |
args.validation_image is not None | |
and args.validation_prompt is not None | |
and len(args.validation_image) != 1 | |
and len(args.validation_prompt) != 1 | |
and len(args.validation_image) != len(args.validation_prompt) | |
): | |
raise ValueError( | |
"Must provide either 1 `--validation_image`, 1 `--validation_prompt`," | |
" or the same number of `--validation_prompt`s and `--validation_image`s" | |
) | |
# This idea comes from | |
# https://github.com/borisdayma/dalle-mini/blob/d2be512d4a6a9cda2d63ba04afc33038f98f705f/src/dalle_mini/data.py#L370 | |
if args.streaming and args.max_train_samples is None: | |
raise ValueError("You must specify `max_train_samples` when using dataset streaming.") | |
return args | |
def make_train_dataset(args, tokenizer, batch_size=None): | |
# Get the datasets: you can either provide your own training and evaluation files (see below) | |
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). | |
# In distributed training, the load_dataset function guarantees that only one local process can concurrently | |
# download the dataset. | |
if args.dataset_name is not None: | |
# Downloading and loading a dataset from the hub. | |
dataset = load_dataset( | |
args.dataset_name, | |
args.dataset_config_name, | |
cache_dir=args.cache_dir, | |
streaming=args.streaming, | |
) | |
else: | |
if args.train_data_dir is not None: | |
dataset = load_dataset( | |
args.train_data_dir, | |
cache_dir=args.cache_dir, | |
) | |
# See more about loading custom images at | |
# https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script | |
# Preprocessing the datasets. | |
# We need to tokenize inputs and targets. | |
if isinstance(dataset["train"], IterableDataset): | |
column_names = next(iter(dataset["train"])).keys() | |
else: | |
column_names = dataset["train"].column_names | |
# 6. Get the column names for input/target. | |
if args.image_column is None: | |
image_column = column_names[0] | |
logger.info(f"image column defaulting to {image_column}") | |
else: | |
image_column = args.image_column | |
if image_column not in column_names: | |
raise ValueError( | |
f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" | |
) | |
if args.caption_column is None: | |
caption_column = column_names[1] | |
logger.info(f"caption column defaulting to {caption_column}") | |
else: | |
caption_column = args.caption_column | |
if caption_column not in column_names: | |
raise ValueError( | |
f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" | |
) | |
if args.conditioning_image_column is None: | |
conditioning_image_column = column_names[2] | |
logger.info(f"conditioning image column defaulting to {caption_column}") | |
else: | |
conditioning_image_column = args.conditioning_image_column | |
if conditioning_image_column not in column_names: | |
raise ValueError( | |
f"`--conditioning_image_column` value '{args.conditioning_image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" | |
) | |
def tokenize_captions(examples, is_train=True): | |
captions = [] | |
for caption in examples[caption_column]: | |
if random.random() < args.proportion_empty_prompts: | |
captions.append("") | |
elif isinstance(caption, str): | |
captions.append(caption) | |
elif isinstance(caption, (list, np.ndarray)): | |
# take a random caption if there are multiple | |
captions.append(random.choice(caption) if is_train else caption[0]) | |
else: | |
raise ValueError( | |
f"Caption column `{caption_column}` should contain either strings or lists of strings." | |
) | |
inputs = tokenizer( | |
captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" | |
) | |
return inputs.input_ids | |
image_transforms = transforms.Compose( | |
[ | |
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
] | |
) | |
conditioning_image_transforms = transforms.Compose( | |
[ | |
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), | |
transforms.ToTensor(), | |
] | |
) | |
def preprocess_train(examples): | |
images = [image.convert("RGB") for image in examples[image_column]] | |
images = [image_transforms(image) for image in images] | |
conditioning_images = [image.convert("RGB") for image in examples[conditioning_image_column]] | |
conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images] | |
examples["pixel_values"] = images | |
examples["conditioning_pixel_values"] = conditioning_images | |
examples["input_ids"] = tokenize_captions(examples) | |
return examples | |
if jax.process_index() == 0: | |
if args.max_train_samples is not None: | |
if args.streaming: | |
dataset["train"] = dataset["train"].shuffle(seed=args.seed).take(args.max_train_samples) | |
else: | |
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) | |
# Set the training transforms | |
if args.streaming: | |
train_dataset = dataset["train"].map( | |
preprocess_train, | |
batched=True, | |
batch_size=batch_size, | |
remove_columns=list(dataset["train"].features.keys()), | |
) | |
else: | |
train_dataset = dataset["train"].with_transform(preprocess_train) | |
return train_dataset | |
def collate_fn(examples): | |
pixel_values = torch.stack([example["pixel_values"] for example in examples]) | |
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() | |
conditioning_pixel_values = torch.stack([example["conditioning_pixel_values"] for example in examples]) | |
conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float() | |
input_ids = torch.stack([example["input_ids"] for example in examples]) | |
batch = { | |
"pixel_values": pixel_values, | |
"conditioning_pixel_values": conditioning_pixel_values, | |
"input_ids": input_ids, | |
} | |
batch = {k: v.numpy() for k, v in batch.items()} | |
return batch | |
def get_params_to_save(params): | |
return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params)) | |
def main(): | |
args = parse_args() | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
# Setup logging, we only want one process per machine to log things on the screen. | |
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) | |
if jax.process_index() == 0: | |
transformers.utils.logging.set_verbosity_info() | |
else: | |
transformers.utils.logging.set_verbosity_error() | |
# wandb init | |
if jax.process_index() == 0 and args.report_to == "wandb": | |
wandb.init( | |
project=args.tracker_project_name, | |
job_type="train", | |
config=args, | |
) | |
if args.seed is not None: | |
set_seed(args.seed) | |
rng = jax.random.PRNGKey(0) | |
# Handle the repository creation | |
if jax.process_index() == 0: | |
if args.output_dir is not None: | |
os.makedirs(args.output_dir, exist_ok=True) | |
if args.push_to_hub: | |
repo_id = create_repo( | |
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
).repo_id | |
# Load the tokenizer and add the placeholder token as a additional special token | |
if args.tokenizer_name: | |
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) | |
elif args.pretrained_model_name_or_path: | |
tokenizer = CLIPTokenizer.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision | |
) | |
else: | |
raise NotImplementedError("No tokenizer specified!") | |
# Get the datasets: you can either provide your own training and evaluation files (see below) | |
total_train_batch_size = args.train_batch_size * jax.local_device_count() * args.gradient_accumulation_steps | |
train_dataset = make_train_dataset(args, tokenizer, batch_size=total_train_batch_size) | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset, | |
shuffle=not args.streaming, | |
collate_fn=collate_fn, | |
batch_size=total_train_batch_size, | |
num_workers=args.dataloader_num_workers, | |
drop_last=True, | |
) | |
weight_dtype = jnp.float32 | |
if args.mixed_precision == "fp16": | |
weight_dtype = jnp.float16 | |
elif args.mixed_precision == "bf16": | |
weight_dtype = jnp.bfloat16 | |
# Load models and create wrapper for stable diffusion | |
text_encoder = FlaxCLIPTextModel.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="text_encoder", | |
dtype=weight_dtype, | |
revision=args.revision, | |
from_pt=args.from_pt, | |
) | |
vae, vae_params = FlaxAutoencoderKL.from_pretrained( | |
args.pretrained_model_name_or_path, | |
revision=args.revision, | |
subfolder="vae", | |
dtype=weight_dtype, | |
from_pt=args.from_pt, | |
) | |
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="unet", | |
dtype=weight_dtype, | |
revision=args.revision, | |
from_pt=args.from_pt, | |
) | |
if args.controlnet_model_name_or_path: | |
logger.info("Loading existing controlnet weights") | |
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( | |
args.controlnet_model_name_or_path, from_pt=True, dtype=jnp.float32 | |
) | |
else: | |
logger.info("Initializing controlnet weights from unet") | |
rng, rng_params = jax.random.split(rng) | |
controlnet = FlaxControlNetModel( | |
in_channels=unet.config.in_channels, | |
down_block_types=unet.config.down_block_types, | |
only_cross_attention=unet.config.only_cross_attention, | |
block_out_channels=unet.config.block_out_channels, | |
layers_per_block=unet.config.layers_per_block, | |
attention_head_dim=unet.config.attention_head_dim, | |
cross_attention_dim=unet.config.cross_attention_dim, | |
use_linear_projection=unet.config.use_linear_projection, | |
flip_sin_to_cos=unet.config.flip_sin_to_cos, | |
freq_shift=unet.config.freq_shift, | |
) | |
controlnet_params = controlnet.init_weights(rng=rng_params) | |
controlnet_params = unfreeze(controlnet_params) | |
for key in [ | |
"conv_in", | |
"time_embedding", | |
"down_blocks_0", | |
"down_blocks_1", | |
"down_blocks_2", | |
"down_blocks_3", | |
"mid_block", | |
]: | |
controlnet_params[key] = unet_params[key] | |
# Optimization | |
if args.scale_lr: | |
args.learning_rate = args.learning_rate * total_train_batch_size | |
constant_scheduler = optax.constant_schedule(args.learning_rate) | |
adamw = optax.adamw( | |
learning_rate=constant_scheduler, | |
b1=args.adam_beta1, | |
b2=args.adam_beta2, | |
eps=args.adam_epsilon, | |
weight_decay=args.adam_weight_decay, | |
) | |
optimizer = optax.chain( | |
optax.clip_by_global_norm(args.max_grad_norm), | |
adamw, | |
) | |
state = train_state.TrainState.create(apply_fn=controlnet.__call__, params=controlnet_params, tx=optimizer) | |
noise_scheduler, noise_scheduler_state = FlaxDDPMScheduler.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="scheduler" | |
) | |
# Initialize our training | |
validation_rng, train_rngs = jax.random.split(rng) | |
train_rngs = jax.random.split(train_rngs, jax.local_device_count()) | |
def train_step(state, unet_params, text_encoder_params, vae_params, batch, train_rng): | |
# reshape batch, add grad_step_dim if gradient_accumulation_steps > 1 | |
if args.gradient_accumulation_steps > 1: | |
grad_steps = args.gradient_accumulation_steps | |
batch = jax.tree_map(lambda x: x.reshape((grad_steps, x.shape[0] // grad_steps) + x.shape[1:]), batch) | |
def compute_loss(params, minibatch, sample_rng): | |
# Convert images to latent space | |
vae_outputs = vae.apply( | |
{"params": vae_params}, minibatch["pixel_values"], deterministic=True, method=vae.encode | |
) | |
latents = vae_outputs.latent_dist.sample(sample_rng) | |
# (NHWC) -> (NCHW) | |
latents = jnp.transpose(latents, (0, 3, 1, 2)) | |
latents = latents * vae.config.scaling_factor | |
# Sample noise that we'll add to the latents | |
noise_rng, timestep_rng = jax.random.split(sample_rng) | |
noise = jax.random.normal(noise_rng, latents.shape) | |
# Sample a random timestep for each image | |
bsz = latents.shape[0] | |
timesteps = jax.random.randint( | |
timestep_rng, | |
(bsz,), | |
0, | |
noise_scheduler.config.num_train_timesteps, | |
) | |
# Add noise to the latents according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps) | |
# Get the text embedding for conditioning | |
encoder_hidden_states = text_encoder( | |
minibatch["input_ids"], | |
params=text_encoder_params, | |
train=False, | |
)[0] | |
controlnet_cond = minibatch["conditioning_pixel_values"] | |
# Predict the noise residual and compute loss | |
down_block_res_samples, mid_block_res_sample = controlnet.apply( | |
{"params": params}, | |
noisy_latents, | |
timesteps, | |
encoder_hidden_states, | |
controlnet_cond, | |
train=True, | |
return_dict=False, | |
) | |
model_pred = unet.apply( | |
{"params": unet_params}, | |
noisy_latents, | |
timesteps, | |
encoder_hidden_states, | |
down_block_additional_residuals=down_block_res_samples, | |
mid_block_additional_residual=mid_block_res_sample, | |
).sample | |
# Get the target for loss depending on the prediction type | |
if noise_scheduler.config.prediction_type == "epsilon": | |
target = noise | |
elif noise_scheduler.config.prediction_type == "v_prediction": | |
target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps) | |
else: | |
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
loss = (target - model_pred) ** 2 | |
loss = loss.mean() | |
return loss | |
grad_fn = jax.value_and_grad(compute_loss) | |
# get a minibatch (one gradient accumulation slice) | |
def get_minibatch(batch, grad_idx): | |
return jax.tree_util.tree_map( | |
lambda x: jax.lax.dynamic_index_in_dim(x, grad_idx, keepdims=False), | |
batch, | |
) | |
def loss_and_grad(grad_idx, train_rng): | |
# create minibatch for the grad step | |
minibatch = get_minibatch(batch, grad_idx) if grad_idx is not None else batch | |
sample_rng, train_rng = jax.random.split(train_rng, 2) | |
loss, grad = grad_fn(state.params, minibatch, sample_rng) | |
return loss, grad, train_rng | |
if args.gradient_accumulation_steps == 1: | |
loss, grad, new_train_rng = loss_and_grad(None, train_rng) | |
else: | |
init_loss_grad_rng = ( | |
0.0, # initial value for cumul_loss | |
jax.tree_map(jnp.zeros_like, state.params), # initial value for cumul_grad | |
train_rng, # initial value for train_rng | |
) | |
def cumul_grad_step(grad_idx, loss_grad_rng): | |
cumul_loss, cumul_grad, train_rng = loss_grad_rng | |
loss, grad, new_train_rng = loss_and_grad(grad_idx, train_rng) | |
cumul_loss, cumul_grad = jax.tree_map(jnp.add, (cumul_loss, cumul_grad), (loss, grad)) | |
return cumul_loss, cumul_grad, new_train_rng | |
loss, grad, new_train_rng = jax.lax.fori_loop( | |
0, | |
args.gradient_accumulation_steps, | |
cumul_grad_step, | |
init_loss_grad_rng, | |
) | |
loss, grad = jax.tree_map(lambda x: x / args.gradient_accumulation_steps, (loss, grad)) | |
grad = jax.lax.pmean(grad, "batch") | |
new_state = state.apply_gradients(grads=grad) | |
metrics = {"loss": loss} | |
metrics = jax.lax.pmean(metrics, axis_name="batch") | |
return new_state, metrics, new_train_rng | |
# Create parallel version of the train step | |
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) | |
# Replicate the train state on each device | |
state = jax_utils.replicate(state) | |
unet_params = jax_utils.replicate(unet_params) | |
text_encoder_params = jax_utils.replicate(text_encoder.params) | |
vae_params = jax_utils.replicate(vae_params) | |
# Train! | |
if args.streaming: | |
dataset_length = args.max_train_samples | |
else: | |
dataset_length = len(train_dataloader) | |
num_update_steps_per_epoch = math.ceil(dataset_length / args.gradient_accumulation_steps) | |
# Scheduler and math around the number of training steps. | |
if args.max_train_steps is None: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {args.max_train_samples if args.streaming else len(train_dataset)}") | |
logger.info(f" Num Epochs = {args.num_train_epochs}") | |
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}") | |
logger.info(f" Total optimization steps = {args.num_train_epochs * num_update_steps_per_epoch}") | |
if jax.process_index() == 0: | |
wandb.define_metric("*", step_metric="train/step") | |
wandb.config.update( | |
{ | |
"num_train_examples": args.max_train_samples if args.streaming else len(train_dataset), | |
"total_train_batch_size": total_train_batch_size, | |
"total_optimization_step": args.num_train_epochs * num_update_steps_per_epoch, | |
"num_devices": jax.device_count(), | |
} | |
) | |
global_step = 0 | |
epochs = tqdm( | |
range(args.num_train_epochs), | |
desc="Epoch ... ", | |
position=0, | |
disable=jax.process_index() > 0, | |
) | |
for epoch in epochs: | |
# ======================== Training ================================ | |
train_metrics = [] | |
steps_per_epoch = ( | |
args.max_train_samples // total_train_batch_size | |
if args.streaming | |
else len(train_dataset) // total_train_batch_size | |
) | |
train_step_progress_bar = tqdm( | |
total=steps_per_epoch, | |
desc="Training...", | |
position=1, | |
leave=False, | |
disable=jax.process_index() > 0, | |
) | |
# train | |
for batch in train_dataloader: | |
batch = shard(batch) | |
state, train_metric, train_rngs = p_train_step( | |
state, unet_params, text_encoder_params, vae_params, batch, train_rngs | |
) | |
train_metrics.append(train_metric) | |
train_step_progress_bar.update(1) | |
global_step += 1 | |
if global_step >= args.max_train_steps: | |
break | |
if ( | |
args.validation_prompt is not None | |
and global_step % args.validation_steps == 0 | |
and jax.process_index() == 0 | |
): | |
_ = log_validation(controlnet, state.params, tokenizer, args, validation_rng, weight_dtype) | |
if global_step % args.logging_steps == 0 and jax.process_index() == 0: | |
if args.report_to == "wandb": | |
wandb.log( | |
{ | |
"train/step": global_step, | |
"train/epoch": epoch, | |
"train/loss": jax_utils.unreplicate(train_metric)["loss"], | |
} | |
) | |
train_metric = jax_utils.unreplicate(train_metric) | |
train_step_progress_bar.close() | |
epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})") | |
# Create the pipeline using using the trained modules and save it. | |
if jax.process_index() == 0: | |
if args.validation_prompt is not None: | |
image_logs = log_validation(controlnet, state.params, tokenizer, args, validation_rng, weight_dtype) | |
controlnet.save_pretrained( | |
args.output_dir, | |
params=get_params_to_save(state.params), | |
) | |
if args.push_to_hub: | |
save_model_card( | |
repo_id, | |
image_logs=image_logs, | |
base_model=args.pretrained_model_name_or_path, | |
repo_folder=args.output_dir, | |
) | |
upload_folder( | |
repo_id=repo_id, | |
folder_path=args.output_dir, | |
commit_message="End of training", | |
ignore_patterns=["step_*", "epoch_*"], | |
) | |
if __name__ == "__main__": | |
main() | |