import gradio as gr import json import torch import wavio from tqdm import tqdm from huggingface_hub import snapshot_download from models import AudioDiffusion, DDPMScheduler from audioldm.audio.stft import TacotronSTFT #from audioldm.variational_autoencoder import AutoencoderKL from pydub import AudioSegment from gradio import Markdown import spaces import torch from diffusers.models.autoencoder_kl import AutoencoderKL from diffusers.models.unet_2d_condition import UNet2DConditionModel from diffusers import DiffusionPipeline,AudioPipelineOutput from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast from typing import Union from diffusers.utils.torch_utils import randn_tensor from tqdm import tqdm class Tango2Pipeline(DiffusionPipeline): def __init__( self, vae: AutoencoderKL, text_encoder: T5EncoderModel, tokenizer: Union[T5Tokenizer, T5TokenizerFast], unet: UNet2DConditionModel, scheduler: DDPMScheduler ): super().__init__() self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler ) def _encode_prompt(self, prompt): device = self.text_encoder.device batch = self.tokenizer( prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" ) input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) encoder_hidden_states = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask )[0] boolean_encoder_mask = (attention_mask == 1).to(device) return encoder_hidden_states, boolean_encoder_mask def _encode_text_classifier_free(self, prompt, num_samples_per_prompt): device = self.text_encoder.device batch = self.tokenizer( prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" ) input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) with torch.no_grad(): prompt_embeds = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask )[0] prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0) # get unconditional embeddings for classifier free guidance uncond_tokens = [""] * len(prompt) max_length = prompt_embeds.shape[1] uncond_batch = self.tokenizer( uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt", ) uncond_input_ids = uncond_batch.input_ids.to(device) uncond_attention_mask = uncond_batch.attention_mask.to(device) with torch.no_grad(): negative_prompt_embeds = self.text_encoder( input_ids=uncond_input_ids, attention_mask=uncond_attention_mask )[0] negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) # For classifier free guidance, we need to do two forward passes. # We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) boolean_prompt_mask = (prompt_mask == 1).to(device) return prompt_embeds, boolean_prompt_mask def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device): shape = (batch_size, num_channels_latents, 256, 16) latents = randn_tensor(shape, generator=None, device=device, dtype=dtype) # scale the initial noise by the standard deviation required by the scheduler latents = latents * inference_scheduler.init_noise_sigma return latents @torch.no_grad() def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, disable_progress=True): device = self.text_encoder.device classifier_free_guidance = guidance_scale > 1.0 batch_size = len(prompt) * num_samples_per_prompt if classifier_free_guidance: prompt_embeds, boolean_prompt_mask = self._encode_text_classifier_free(prompt, num_samples_per_prompt) else: prompt_embeds, boolean_prompt_mask = self._encode_text(prompt) prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0) inference_scheduler.set_timesteps(num_steps, device=device) timesteps = inference_scheduler.timesteps num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device) num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order progress_bar = tqdm(range(num_steps), disable=disable_progress) for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t) noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, encoder_attention_mask=boolean_prompt_mask ).sample # perform guidance if classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = inference_scheduler.step(noise_pred, t, latents).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0): progress_bar.update(1) return latents @torch.no_grad() def __call__(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True): """ Genrate audio for a single prompt string. """ with torch.no_grad(): latents = self.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress) mel = self.vae.decode_first_stage(latents) wave = self.vae.decode_to_waveform(mel) return AudioPipelineOutput(audios=wave) # Automatic device detection if torch.cuda.is_available(): device_type = "cuda" device_selection = "cuda:0" else: device_type = "cpu" device_selection = "cpu" class Tango: def __init__(self, name="declare-lab/tango2", device=device_selection): path = snapshot_download(repo_id=name) vae_config = json.load(open("{}/vae_config.json".format(path))) stft_config = json.load(open("{}/stft_config.json".format(path))) main_config = json.load(open("{}/main_config.json".format(path))) self.vae = AutoencoderKL(**vae_config).to(device) self.stft = TacotronSTFT(**stft_config).to(device) self.model = AudioDiffusion(**main_config).to(device) vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location=device) stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location=device) main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location=device) self.vae.load_state_dict(vae_weights) self.stft.load_state_dict(stft_weights) self.model.load_state_dict(main_weights) print ("Successfully loaded checkpoint from:", name) self.vae.eval() self.stft.eval() self.model.eval() self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder="scheduler") def chunks(self, lst, n): """ Yield successive n-sized chunks from a list. """ for i in range(0, len(lst), n): yield lst[i:i + n] def generate(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True): """ Genrate audio for a single prompt string. """ with torch.no_grad(): latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress) mel = self.vae.decode_first_stage(latents) wave = self.vae.decode_to_waveform(mel) return wave[0] def generate_for_batch(self, prompts, steps=200, guidance=3, samples=1, batch_size=8, disable_progress=True): """ Genrate audio for a list of prompt strings. """ outputs = [] for k in tqdm(range(0, len(prompts), batch_size)): batch = prompts[k: k+batch_size] with torch.no_grad(): latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress=disable_progress) mel = self.vae.decode_first_stage(latents) wave = self.vae.decode_to_waveform(mel) outputs += [item for item in wave] if samples == 1: return outputs else: return list(self.chunks(outputs, samples)) # Initialize TANGO tango = Tango(device="cpu") pipe = Tango2Pipeline(vae=tango.vae, text_encoder=tango.model.text_encoder, tokenizer=tango.model.tokenizer, unet=tango.model.unet, scheduler=tango.scheduler ) pipe.to(device_type) #tango.vae.to(device_type) #tango.stft.to(device_type) #tango.model.to(device_type) @spaces.GPU(duration=60) def gradio_generate(prompt, output_format, steps, guidance): output_wave = pipe(prompt,steps,guidance) ## Using pipeliine automatically uses flash attention for torch2.0 above #output_wave = tango.generate(prompt, steps, guidance) # output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav" output_filename = "temp.wav" wavio.write(output_filename, output_wave, rate=16000, sampwidth=2) if (output_format == "mp3"): AudioSegment.from_wav("temp.wav").export("temp.mp3", format = "mp3") output_filename = "temp.mp3" return output_filename # description_text = """ #

Duplicate Space For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings.

# Generate audio using TANGO by providing a text prompt. #

Limitations: TANGO is trained on the small AudioCaps dataset so it may not generate good audio \ # samples related to concepts that it has not seen in training (e.g. singing). For the same reason, TANGO \ # is not always able to finely control its generations over textual control prompts. For example, \ # the generations from TANGO for prompts Chopping tomatoes on a wooden table and Chopping potatoes \ # on a metal table are very similar. \ #

We are currently training another version of TANGO on larger datasets to enhance its generalization, \ # compositional and controllable generation ability. #

We recommend using a guidance scale of 3. The default number of steps is set to 100. More steps generally lead to better quality of generated audios but will take longer. #

#

ChatGPT-enhanced audio generation

#
# As TANGO consists of an instruction-tuned LLM, it is able to process complex sound descriptions allowing us to provide more detailed instructions to improve the generation quality. # For example, ``A boat is moving on the sea'' vs ``The sound of the water lapping against the hull of the boat or splashing as you move through the waves''. The latter is obtained by prompting ChatGPT to explain the sound generated when a boat moves on the sea. # Using this ChatGPT-generated description of the sound, TANGO provides superior results. #

# """ description_text = """

Duplicate Space For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings.

Generate audio using Tango2 by providing a text prompt. Tango2 was built from Tango and was trained on Audio-alpaca

This is the demo for Tango2 for text to audio generation: Read our paper.

""" # Gradio input and output components input_text = gr.Textbox(lines=2, label="Prompt") output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = ["mp3", "wav"], value = "wav") output_audio = gr.Audio(label="Generated Audio", type="filepath") denoising_steps = gr.Slider(minimum=100, maximum=200, value=100, step=1, label="Steps", interactive=True) guidance_scale = gr.Slider(minimum=1, maximum=10, value=3, step=0.1, label="Guidance Scale", interactive=True) # Gradio interface gr_interface = gr.Interface( fn=gradio_generate, inputs=[input_text, output_format, denoising_steps, guidance_scale], outputs=[output_audio], title="Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization", description=description_text, allow_flagging=False, examples=[ ["Quiet speech and then and airplane flying away"], ["A bicycle peddling on dirt and gravel followed by a man speaking then laughing"], ["Ducks quack and water splashes with some animal screeching in the background"], ["Describe the sound of the ocean"], ["A woman and a baby are having a conversation"], ["A man speaks followed by a popping noise and laughter"], ["A cup is filled from a faucet"], ["An audience cheering and clapping"], ["Rolling thunder with lightning strikes"], ["A dog barking and a cat mewing and a racing car passes by"], ["Gentle water stream, birds chirping and sudden gun shot"], ["A man talking followed by a goat baaing then a metal gate sliding shut as ducks quack and wind blows into a microphone."], ["A dog barking"], ["A cat meowing"], ["Wooden table tapping sound while water pouring"], ["Applause from a crowd with distant clicking and a man speaking over a loudspeaker"], ["two gunshots followed by birds flying away while chirping"], ["Whistling with birds chirping"], ["A person snoring"], ["Motor vehicles are driving with loud engines and a person whistles"], ["People cheering in a stadium while thunder and lightning strikes"], ["A helicopter is in flight"], ["A dog barking and a man talking and a racing car passes by"], ], cache_examples="lazy", # Turn on to cache. ) # Launch Gradio app gr_interface.queue(10).launch()