Spaces:
Sleeping
Sleeping
root
commited on
Commit
•
b0ccf04
1
Parent(s):
08fd05e
files added
Browse files- Dockerfile +16 -16
- app.py +42 -42
- utils.py +90 -90
Dockerfile
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
-
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
-
# you will also find guides on how best to write your Dockerfile
|
3 |
-
|
4 |
-
FROM python:3.9
|
5 |
-
|
6 |
-
RUN useradd -m -u 1000 user
|
7 |
-
|
8 |
-
WORKDIR /app
|
9 |
-
|
10 |
-
COPY --chown=user ./requirements.txt requirements.txt
|
11 |
-
|
12 |
-
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
13 |
-
|
14 |
-
COPY --chown=user . /app
|
15 |
-
|
16 |
-
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
1 |
+
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# you will also find guides on how best to write your Dockerfile
|
3 |
+
|
4 |
+
FROM python:3.9
|
5 |
+
|
6 |
+
RUN useradd -m -u 1000 user
|
7 |
+
|
8 |
+
WORKDIR /app
|
9 |
+
|
10 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
11 |
+
|
12 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
13 |
+
|
14 |
+
COPY --chown=user . /app
|
15 |
+
|
16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
CHANGED
@@ -1,42 +1,42 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException
|
2 |
-
from pydantic import BaseModel
|
3 |
-
from utils import retrive_context, generate_response
|
4 |
-
|
5 |
-
|
6 |
-
# Initialize FastAPI
|
7 |
-
app = FastAPI()
|
8 |
-
|
9 |
-
|
10 |
-
class QueryRequest(BaseModel):
|
11 |
-
# Asked query should be in string format
|
12 |
-
query: str
|
13 |
-
|
14 |
-
|
15 |
-
class QueryResponse(BaseModel):
|
16 |
-
# Response should be in string format
|
17 |
-
response: str
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
@app.post("/infer", response_model=QueryResponse)
|
22 |
-
def infer(query_request: QueryRequest):
|
23 |
-
query = query_request.query
|
24 |
-
context = retrive_context(query)
|
25 |
-
if context == 500:
|
26 |
-
raise HTTPException(status_code=500, detail="Error retrieving context")
|
27 |
-
|
28 |
-
response = generate_response(query, context)
|
29 |
-
if response == 500:
|
30 |
-
raise HTTPException(status_code=500, detail="Error generating response")
|
31 |
-
|
32 |
-
return QueryResponse(response=response)
|
33 |
-
|
34 |
-
|
35 |
-
# Root endpoint for testing
|
36 |
-
@app.get("/")
|
37 |
-
def read_root():
|
38 |
-
return {"message": "Inference API is running"}
|
39 |
-
|
40 |
-
if __name__ == "__main__":
|
41 |
-
import uvicorn
|
42 |
-
uvicorn.run(app, host="127.0.0.1", port=8000, log_level="info")
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from utils import retrive_context, generate_response
|
4 |
+
|
5 |
+
|
6 |
+
# Initialize FastAPI
|
7 |
+
app = FastAPI()
|
8 |
+
|
9 |
+
|
10 |
+
class QueryRequest(BaseModel):
|
11 |
+
# Asked query should be in string format
|
12 |
+
query: str
|
13 |
+
|
14 |
+
|
15 |
+
class QueryResponse(BaseModel):
|
16 |
+
# Response should be in string format
|
17 |
+
response: str
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
@app.post("/infer", response_model=QueryResponse)
|
22 |
+
def infer(query_request: QueryRequest):
|
23 |
+
query = query_request.query
|
24 |
+
context = retrive_context(query)
|
25 |
+
if context == 500:
|
26 |
+
raise HTTPException(status_code=500, detail="Error retrieving context")
|
27 |
+
|
28 |
+
response = generate_response(query, context)
|
29 |
+
if response == 500:
|
30 |
+
raise HTTPException(status_code=500, detail="Error generating response")
|
31 |
+
|
32 |
+
return QueryResponse(response=response)
|
33 |
+
|
34 |
+
|
35 |
+
# Root endpoint for testing
|
36 |
+
@app.get("/")
|
37 |
+
def read_root():
|
38 |
+
return {"message": "Inference API is running"}
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
import uvicorn
|
42 |
+
uvicorn.run(app, host="127.0.0.1", port=8000, log_level="info")
|
utils.py
CHANGED
@@ -1,90 +1,90 @@
|
|
1 |
-
# Required modules
|
2 |
-
import os
|
3 |
-
from pinecone import Pinecone
|
4 |
-
from transformers import AutoModel
|
5 |
-
from langchain_core.prompts import ChatPromptTemplate
|
6 |
-
from langchain_groq import ChatGroq
|
7 |
-
from dotenv import load_dotenv
|
8 |
-
load_dotenv()
|
9 |
-
|
10 |
-
|
11 |
-
# Initialize clients, indexes, models etc.
|
12 |
-
pc_client = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
|
13 |
-
pc_index = pc_client.Index(os.getenv("PINECONE_INDEX"))
|
14 |
-
embedding_model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-en', trust_remote_code=True)
|
15 |
-
groq_llm=ChatGroq(
|
16 |
-
groq_api_key=os.getenv("GROQ_API_KEY"),
|
17 |
-
model_name="Llama3-8b-8192"
|
18 |
-
)
|
19 |
-
|
20 |
-
|
21 |
-
#context retrivel
|
22 |
-
def retrive_context(user_query:str) -> str:
|
23 |
-
"""Retrives the context for asked query from vector database
|
24 |
-
|
25 |
-
Args:
|
26 |
-
user_query (str): Questions asked by user to bot
|
27 |
-
|
28 |
-
Returns:
|
29 |
-
context (str): Question's context
|
30 |
-
"""
|
31 |
-
|
32 |
-
context = ""
|
33 |
-
try:
|
34 |
-
embedded_query = embedding_model.encode(user_query).tolist()
|
35 |
-
except Exception as e:
|
36 |
-
return 500
|
37 |
-
|
38 |
-
try:
|
39 |
-
res = pc_index.query(
|
40 |
-
vector=embedded_query,
|
41 |
-
top_k=5,
|
42 |
-
include_values=True,
|
43 |
-
include_metadata = True
|
44 |
-
)
|
45 |
-
except Exception as e:
|
46 |
-
return 500
|
47 |
-
|
48 |
-
for match in res['matches']:
|
49 |
-
context = context + match['metadata']['text'] + " "
|
50 |
-
|
51 |
-
print(context)
|
52 |
-
return context
|
53 |
-
|
54 |
-
|
55 |
-
# Prompt Engineering for LLM
|
56 |
-
prompt = ChatPromptTemplate.from_template(
|
57 |
-
"""
|
58 |
-
Hello! As a RAG agent for Biskane, your task is to answer the user's question using the provided context. Please keep your responses brief and straightforward.
|
59 |
-
|
60 |
-
<context>
|
61 |
-
{context}
|
62 |
-
<context>
|
63 |
-
Question: {query}
|
64 |
-
"""
|
65 |
-
)
|
66 |
-
|
67 |
-
|
68 |
-
# Response generator
|
69 |
-
def generate_response(query:str, context:str) -> str:
|
70 |
-
"""Generates the response for asked question from given context
|
71 |
-
|
72 |
-
Args:
|
73 |
-
query (str): Query asked by user to bot
|
74 |
-
context (str): Context, retrived from vector database
|
75 |
-
|
76 |
-
Returns:
|
77 |
-
answer (str): Generated response
|
78 |
-
"""
|
79 |
-
try:
|
80 |
-
chain = prompt | groq_llm
|
81 |
-
llm_response = chain.invoke({
|
82 |
-
"context": context,
|
83 |
-
"query": query
|
84 |
-
})
|
85 |
-
return llm_response.content
|
86 |
-
except Exception as e:
|
87 |
-
return 500
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
1 |
+
# Required modules
|
2 |
+
import os
|
3 |
+
from pinecone import Pinecone
|
4 |
+
from transformers import AutoModel
|
5 |
+
from langchain_core.prompts import ChatPromptTemplate
|
6 |
+
from langchain_groq import ChatGroq
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
|
11 |
+
# Initialize clients, indexes, models etc.
|
12 |
+
pc_client = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
|
13 |
+
pc_index = pc_client.Index(os.getenv("PINECONE_INDEX"))
|
14 |
+
embedding_model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-en', trust_remote_code=True)
|
15 |
+
groq_llm=ChatGroq(
|
16 |
+
groq_api_key=os.getenv("GROQ_API_KEY"),
|
17 |
+
model_name="Llama3-8b-8192"
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
#context retrivel
|
22 |
+
def retrive_context(user_query:str) -> str:
|
23 |
+
"""Retrives the context for asked query from vector database
|
24 |
+
|
25 |
+
Args:
|
26 |
+
user_query (str): Questions asked by user to bot
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
context (str): Question's context
|
30 |
+
"""
|
31 |
+
|
32 |
+
context = ""
|
33 |
+
try:
|
34 |
+
embedded_query = embedding_model.encode(user_query).tolist()
|
35 |
+
except Exception as e:
|
36 |
+
return 500
|
37 |
+
|
38 |
+
try:
|
39 |
+
res = pc_index.query(
|
40 |
+
vector=embedded_query,
|
41 |
+
top_k=5,
|
42 |
+
include_values=True,
|
43 |
+
include_metadata = True
|
44 |
+
)
|
45 |
+
except Exception as e:
|
46 |
+
return 500
|
47 |
+
|
48 |
+
for match in res['matches']:
|
49 |
+
context = context + match['metadata']['text'] + " "
|
50 |
+
|
51 |
+
print(context)
|
52 |
+
return context
|
53 |
+
|
54 |
+
|
55 |
+
# Prompt Engineering for LLM
|
56 |
+
prompt = ChatPromptTemplate.from_template(
|
57 |
+
"""
|
58 |
+
Hello! As a RAG agent for Biskane, your task is to answer the user's question using the provided context. Please keep your responses brief and straightforward.
|
59 |
+
|
60 |
+
<context>
|
61 |
+
{context}
|
62 |
+
<context>
|
63 |
+
Question: {query}
|
64 |
+
"""
|
65 |
+
)
|
66 |
+
|
67 |
+
|
68 |
+
# Response generator
|
69 |
+
def generate_response(query:str, context:str) -> str:
|
70 |
+
"""Generates the response for asked question from given context
|
71 |
+
|
72 |
+
Args:
|
73 |
+
query (str): Query asked by user to bot
|
74 |
+
context (str): Context, retrived from vector database
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
answer (str): Generated response
|
78 |
+
"""
|
79 |
+
try:
|
80 |
+
chain = prompt | groq_llm
|
81 |
+
llm_response = chain.invoke({
|
82 |
+
"context": context,
|
83 |
+
"query": query
|
84 |
+
})
|
85 |
+
return llm_response.content
|
86 |
+
except Exception as e:
|
87 |
+
return 500
|
88 |
+
|
89 |
+
|
90 |
+
|