Spaces:
Running
Running
import glob | |
import os.path | |
import tempfile | |
import gradio as gr | |
from PIL import Image | |
from attack import Attacker, make_args | |
def attack_given_image(image: Image.Image, target: str, steps: int, eps: float, step_size: float, | |
progress=gr.Progress()): | |
if image.mode != 'RGB': | |
image = image.convert('RGB') | |
with tempfile.TemporaryDirectory() as td_input, tempfile.TemporaryDirectory() as td_output: | |
image_filename = os.path.join(td_input, 'image.png') | |
image.save(image_filename) | |
def _step_func(current_step: int): | |
progress(current_step / steps) | |
args = make_args([ | |
image_filename, | |
'--out_dir', str(td_output), | |
'--target', target, | |
'--eps', str(eps), | |
'--step_size', str(step_size), | |
'--steps', str(steps), | |
]) | |
attacker = Attacker(args) | |
before_prediction = attacker.image_predict(image) | |
attacker.attack(args.inputs, _step_func) | |
output_filename, *_ = glob.glob(os.path.join(td_output, '*.png')) | |
output_image = Image.open(output_filename) | |
after_prediction = attacker.image_predict(output_image) | |
return before_prediction, after_prediction, output_image | |
if __name__ == '__main__': | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.HTML('<p style=\'font-size: 18px; text-align: center;\'>' | |
' Too slow? Try this locally: ' | |
' <a href="https://github.com/7eu7d7/anime-ai-detect-fucker" ' | |
' style=\'text-decoration: underline;\'>' | |
' Github - 7eu7d7/anime-ai-detect-fucker' | |
' </a>.' | |
' or' | |
' <a href="https://colab.research.google.com/drive/1bzoZtE28Y8vfmjuaxXKdh-fr4K0WWSmf?usp=sharing" ' | |
' target="_parent">' | |
' <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>' | |
' </a>' | |
'</p>') | |
with gr.Row(): | |
with gr.Column(): | |
gr_input_image = gr.Image(type='pil', label='Original Image') | |
with gr.Row(): | |
gr_attack_target = gr.Radio(['auto', 'ai', 'human', 'same'], value='auto', label='Attack Target') | |
gr_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label='Steps') | |
with gr.Row(): | |
gr_eps = gr.Slider(label="eps (Noise intensity)", minimum=1, maximum=16, step=1, value=1) | |
gr_noise_step_size = gr.Slider(label="Noise step size", minimum=0.001, maximum=16, step=0.001, | |
value=0.136) | |
gr_btn_submit = gr.Button(value='Attack This Image', variant='primary') | |
with gr.Column(): | |
with gr.Row(): | |
gr_before_prediction = gr.Label(label='Before Prediction') | |
gr_after_prediction = gr.Label(label='After Prediction') | |
gr_output_image = gr.Image(type='pil', label='Attacked Image') | |
gr_btn_submit.click( | |
attack_given_image, | |
inputs=[gr_input_image, gr_attack_target, gr_steps, gr_eps, gr_noise_step_size], | |
outputs=[gr_before_prediction, gr_after_prediction, gr_output_image], | |
) | |
demo.queue(os.cpu_count()).launch() | |