File size: 4,986 Bytes
c24a176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import math
from dataclasses import dataclass
from functools import lru_cache
from pathlib import Path
from typing import Optional

import numpy as np
import pandas as pd
import torch
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import HfHubHTTPError
from PIL import Image
from torch import Tensor, nn


@dataclass
class Heatmap:
    label: str
    score: float
    image: Image.Image


@dataclass
class LabelData:
    names: list[str]
    rating: list[np.int64]
    general: list[np.int64]
    character: list[np.int64]


@dataclass
class ImageLabels:
    caption: str
    booru: str
    rating: dict[str, float]
    general: dict[str, float]
    character: dict[str, float]


@lru_cache(maxsize=5)
def load_labels_hf(
    repo_id: str,
    revision: Optional[str] = None,
    token: Optional[str] = None,
) -> LabelData:
    try:
        csv_path = hf_hub_download(
            repo_id=repo_id, filename="selected_tags.csv", revision=revision, token=token
        )
        csv_path = Path(csv_path).resolve()
    except HfHubHTTPError as e:
        raise FileNotFoundError(f"selected_tags.csv failed to download from {repo_id}") from e

    df: pd.DataFrame = pd.read_csv(csv_path, usecols=["name", "category"])
    tag_data = LabelData(
        names=df["name"].tolist(),
        rating=list(np.where(df["category"] == 9)[0]),
        general=list(np.where(df["category"] == 0)[0]),
        character=list(np.where(df["category"] == 4)[0]),
    )

    return tag_data


def mcut_threshold(probs: np.ndarray) -> float:
    """
    Maximum Cut Thresholding (MCut)
    Largeron, C., Moulin, C., & Gery, M. (2012). MCut: A Thresholding Strategy
     for Multi-label Classification. In 11th International Symposium, IDA 2012
     (pp. 172-183).
    """
    probs = probs[probs.argsort()[::-1]]
    diffs = probs[:-1] - probs[1:]
    idx = diffs.argmax()
    thresh = (probs[idx] + probs[idx + 1]) / 2
    return float(thresh)


def pil_ensure_rgb(image: Image.Image) -> Image.Image:
    # convert to RGB/RGBA if not already (deals with palette images etc.)
    if image.mode not in ["RGB", "RGBA"]:
        image = image.convert("RGBA") if "transparency" in image.info else image.convert("RGB")
    # convert RGBA to RGB with white background
    if image.mode == "RGBA":
        canvas = Image.new("RGBA", image.size, (255, 255, 255))
        canvas.alpha_composite(image)
        image = canvas.convert("RGB")
    return image


def pil_pad_square(
    image: Image.Image,
    fill: tuple[int, int, int] = (255, 255, 255),
) -> Image.Image:
    w, h = image.size
    # get the largest dimension so we can pad to a square
    px = max(image.size)
    # pad to square with white background
    canvas = Image.new("RGB", (px, px), fill)
    canvas.paste(image, ((px - w) // 2, (px - h) // 2))
    return canvas


def preprocess_image(
    image: Image.Image,
    size_px: int | tuple[int, int],
    upscale: bool = True,
) -> Image.Image:
    """
    Preprocess an image to be square and centered on a white background.
    """
    if isinstance(size_px, int):
        size_px = (size_px, size_px)

    # ensure RGB and pad to square
    image = pil_ensure_rgb(image)
    image = pil_pad_square(image)

    # resize to target size
    if image.size[0] < size_px[0] or image.size[1] < size_px[1]:
        if upscale is False:
            raise ValueError("Image is smaller than target size, and upscaling is disabled")
        image = image.resize(size_px, Image.LANCZOS)
    if image.size[0] > size_px[0] or image.size[1] > size_px[1]:
        image.thumbnail(size_px, Image.BICUBIC)

    return image


def pil_make_grid(
    images: list[Image.Image],
    max_cols: int = 8,
    padding: int = 4,
    bg_color: tuple[int, int, int] = (40, 42, 54),  # dracula background color
    partial_rows: bool = True,
) -> Image.Image:
    n_cols = min(math.floor(math.sqrt(len(images))), max_cols)
    n_rows = math.ceil(len(images) / n_cols)

    # if the final row is not full and partial_rows is False, remove a row
    if n_cols * n_rows > len(images) and not partial_rows:
        n_rows -= 1

    # assumes all images are same size
    image_width, image_height = images[0].size

    canvas_width = ((image_width + padding) * n_cols) + padding
    canvas_height = ((image_height + padding) * n_rows) + padding

    canvas = Image.new("RGB", (canvas_width, canvas_height), bg_color)
    for i, img in enumerate(images):
        x = (i % n_cols) * (image_width + padding) + padding
        y = (i // n_cols) * (image_height + padding) + padding
        canvas.paste(img, (x, y))

    return canvas


# https://github.com/toriato/stable-diffusion-webui-wd14-tagger/blob/a9eacb1eff904552d3012babfa28b57e1d3e295c/tagger/ui.py#L368
kaomojis = [
    "0_0",
    "(o)_(o)",
    "+_+",
    "+_-",
    "._.",
    "<o>_<o>",
    "<|>_<|>",
    "=_=",
    ">_<",
    "3_3",
    "6_9",
    ">_o",
    "@_@",
    "^_^",
    "o_o",
    "u_u",
    "x_x",
    "|_|",
    "||_||",
]