silvanocerza's picture
Simplify source documents printing
a44a0ba
raw
history blame
6.26 kB
from typing import List, Tuple
from pathlib import Path
import subprocess
import os
from dotenv import load_dotenv
from haystack.preview import Pipeline
from haystack.preview.dataclasses import GeneratedAnswer
from haystack.preview.components.retrievers import MemoryBM25Retriever
from haystack.preview.components.generators.openai.gpt import GPTGenerator
from haystack.preview.components.builders.answer_builder import AnswerBuilder
from haystack.preview.components.builders.prompt_builder import PromptBuilder
from haystack.preview.components.preprocessors import (
DocumentCleaner,
TextDocumentSplitter,
)
from haystack.preview.components.writers import DocumentWriter
from haystack.preview.components.file_converters import TextFileToDocument
from haystack.preview.document_stores.memory import MemoryDocumentStore
import streamlit as st
# Load the environment variables, we're going to need it for OpenAI
load_dotenv()
# This is the list of documentation that we're going to fetch
DOCUMENTATIONS = [
("DocArray", "https://github.com/docarray/docarray", "./docs/**/*.md"),
("Streamlit", "https://github.com/streamlit/docs", "./content/**/*.md"),
("Jinja", "https://github.com/pallets/jinja", "./docs/**/*.rst"),
("Pandas", "https://github.com/pandas-dev/pandas", "./docs/source/**/*.rst"),
(
"Elasticsearch",
"https://github.com/elastic/elasticsearch",
"./docs/**/*.asciidoc",
),
("NumPy", "https://github.com/numpy/numpy", "./doc/**/*.rst"),
]
@st.cache_data(show_spinner=False)
def fetch(documentations: List[Tuple[str, str, str]]):
files = []
for name, url, pattern in documentations:
st.write(f"Fetching {name} repository")
repo = Path(__file__).parent / "downloaded_docs" / name
if not repo.exists():
subprocess.run(["git", "clone", "--depth", "1", url, str(repo)], check=True)
res = subprocess.run(
["git", "rev-parse", "--abbrev-ref", "HEAD"],
check=True,
capture_output=True,
encoding="utf-8",
)
branch = res.stdout.strip()
for p in repo.glob(pattern):
data = {
"path": p,
"metadata": {
"url_source": f"{url}/tree/{branch}/{p.relative_to(repo)}",
"suffix": p.suffix,
},
}
files.append(data)
return files
@st.cache_resource(show_spinner=False)
def document_store():
# We're going to store the processed documents in here
return MemoryDocumentStore()
@st.cache_resource(show_spinner=False)
def index_files(files):
# We create some components
text_converter = TextFileToDocument(progress_bar=False)
document_cleaner = DocumentCleaner()
document_splitter = TextDocumentSplitter()
document_writer = DocumentWriter(
document_store=document_store(), policy="overwrite"
)
# And our pipeline
indexing_pipeline = Pipeline()
indexing_pipeline.add_component("converter", text_converter)
indexing_pipeline.add_component("cleaner", document_cleaner)
indexing_pipeline.add_component("splitter", document_splitter)
indexing_pipeline.add_component("writer", document_writer)
indexing_pipeline.connect("converter", "cleaner")
indexing_pipeline.connect("cleaner", "splitter")
indexing_pipeline.connect("splitter", "writer")
# And now we save the documentation in our MemoryDocumentStore
paths = []
metadata = []
for f in files:
paths.append(f["path"])
metadata.append(f["metadata"])
indexing_pipeline.run(
{
"converter": {
"paths": paths,
"metadata": metadata,
}
}
)
def search(question: str) -> GeneratedAnswer:
retriever = MemoryBM25Retriever(document_store=document_store(), top_k=5)
template = (
"Take a deep breath and think then answer given the context"
"Context: {{ documents|map(attribute='text')|replace('\n', ' ')|join(';') }}"
"Question: {{ query }}"
"Answer:"
)
prompt_builder = PromptBuilder(template)
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
generator = GPTGenerator(api_key=OPENAI_API_KEY)
answer_builder = AnswerBuilder()
query_pipeline = Pipeline()
query_pipeline.add_component("docs_retriever", retriever)
query_pipeline.add_component("prompt_builder", prompt_builder)
query_pipeline.add_component("gpt35", generator)
query_pipeline.add_component("answer_builder", answer_builder)
query_pipeline.connect("docs_retriever.documents", "prompt_builder.documents")
query_pipeline.connect("prompt_builder.prompt", "gpt35.prompt")
query_pipeline.connect("docs_retriever.documents", "answer_builder.documents")
query_pipeline.connect("gpt35.replies", "answer_builder.replies")
res = query_pipeline.run(
{
"docs_retriever": {"query": question},
"prompt_builder": {"query": question},
"answer_builder": {"query": question},
}
)
return res["answer_builder"]["answers"][0]
with st.status(
"Downloading documentation files...",
expanded=st.session_state.get("expanded", True),
) as status:
files = fetch(DOCUMENTATIONS)
status.update(label="Indexing documentation...")
index_files(files)
status.update(
label="Download and indexing complete!", state="complete", expanded=False
)
st.session_state["expanded"] = False
st.header("πŸ”Ž Documentation finder", divider="rainbow")
st.caption(
f"Use this to search answers for {', '.join([d[0] for d in DOCUMENTATIONS])}"
)
if question := st.text_input(
label="What do you need to know?", placeholder="What is a DataFrame?"
):
with st.spinner("Waiting"):
answer = search(question)
if not st.session_state.get("run_once", False):
st.balloons()
st.session_state["run_once"] = True
st.markdown(answer.data)
with st.expander("See sources:"):
for document in answer.documents:
url_source = document.metadata.get("url_source", "")
st.write(url_source)
st.text(document.text)
st.divider()