Spaces:
Running
Running
silvanocerza
commited on
Commit
•
8d18428
1
Parent(s):
6b3c370
Rework download and indexing to save metadata
Browse files
main.py
CHANGED
@@ -39,15 +39,30 @@ DOCUMENTATIONS = [
|
|
39 |
|
40 |
@st.cache_data(show_spinner=False)
|
41 |
def fetch(documentations: List[Tuple[str, str, str]]):
|
42 |
-
|
43 |
for name, url, pattern in documentations:
|
44 |
st.write(f"Fetching {name} repository")
|
45 |
repo = Path(__file__).parent / "downloaded_docs" / name
|
46 |
if not repo.exists():
|
47 |
subprocess.run(["git", "clone", "--depth", "1", url, str(repo)], check=True)
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
|
53 |
@st.cache_resource(show_spinner=False)
|
@@ -76,8 +91,13 @@ def index_files(files):
|
|
76 |
indexing_pipeline.connect("cleaner", "splitter")
|
77 |
indexing_pipeline.connect("splitter", "writer")
|
78 |
|
79 |
-
# And now we
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
|
83 |
def search(question: str) -> GeneratedAnswer:
|
|
|
39 |
|
40 |
@st.cache_data(show_spinner=False)
|
41 |
def fetch(documentations: List[Tuple[str, str, str]]):
|
42 |
+
files = []
|
43 |
for name, url, pattern in documentations:
|
44 |
st.write(f"Fetching {name} repository")
|
45 |
repo = Path(__file__).parent / "downloaded_docs" / name
|
46 |
if not repo.exists():
|
47 |
subprocess.run(["git", "clone", "--depth", "1", url, str(repo)], check=True)
|
48 |
+
res = subprocess.run(
|
49 |
+
["git", "rev-parse", "--abbrev-ref", "HEAD"],
|
50 |
+
check=True,
|
51 |
+
capture_output=True,
|
52 |
+
encoding="utf-8",
|
53 |
+
)
|
54 |
+
branch = res.stdout.strip()
|
55 |
+
for p in repo.glob(pattern):
|
56 |
+
data = {
|
57 |
+
"path": p,
|
58 |
+
"metadata": {
|
59 |
+
"url_source": f"{url}/tree/{branch}/{p.relative_to(repo)}",
|
60 |
+
"suffix": p.suffix,
|
61 |
+
},
|
62 |
+
}
|
63 |
+
files.append(data)
|
64 |
+
|
65 |
+
return files
|
66 |
|
67 |
|
68 |
@st.cache_resource(show_spinner=False)
|
|
|
91 |
indexing_pipeline.connect("cleaner", "splitter")
|
92 |
indexing_pipeline.connect("splitter", "writer")
|
93 |
|
94 |
+
# And now we save the documentation in our MemoryDocumentStore
|
95 |
+
paths = []
|
96 |
+
metadata = []
|
97 |
+
for f in files:
|
98 |
+
paths.append(f["path"])
|
99 |
+
metadata.append(f["metadata"])
|
100 |
+
indexing_pipeline.run({"converter": {"paths": paths, "metadata": metadata}})
|
101 |
|
102 |
|
103 |
def search(question: str) -> GeneratedAnswer:
|