from typing import List, Tuple from pathlib import Path import subprocess import os from dotenv import load_dotenv from haystack.preview import Pipeline from haystack.preview.dataclasses import GeneratedAnswer from haystack.preview.components.retrievers import MemoryBM25Retriever from haystack.preview.components.generators.openai.gpt import GPTGenerator from haystack.preview.components.builders.answer_builder import AnswerBuilder from haystack.preview.components.builders.prompt_builder import PromptBuilder from haystack.preview.components.preprocessors import ( DocumentCleaner, TextDocumentSplitter, ) from haystack.preview.components.writers import DocumentWriter from haystack.preview.components.file_converters import TextFileToDocument from haystack.preview.document_stores.memory import MemoryDocumentStore import streamlit as st # Load the environment variables, we're going to need it for OpenAI load_dotenv() # This is the list of documentation that we're going to fetch DOCUMENTATIONS = [ ("DocArray", "https://github.com/docarray/docarray", "./docs/**/*.md"), ("Streamlit", "https://github.com/streamlit/docs", "./content/**/*.md"), ("Jinja", "https://github.com/pallets/jinja", "./docs/**/*.rst"), ("Pandas", "https://github.com/pandas-dev/pandas", "./docs/source/**/*.rst"), ( "Elasticsearch", "https://github.com/elastic/elasticsearch", "./docs/**/*.asciidoc", ), ("NumPy", "https://github.com/numpy/numpy", "./doc/**/*.rst"), ] @st.cache_data(show_spinner=False) def fetch(documentations: List[Tuple[str, str, str]]): files = [] for name, url, pattern in documentations: st.write(f"Fetching {name} repository") repo = Path(__file__).parent / "downloaded_docs" / name if not repo.exists(): subprocess.run(["git", "clone", "--depth", "1", url, str(repo)], check=True) res = subprocess.run( ["git", "rev-parse", "--abbrev-ref", "HEAD"], check=True, capture_output=True, encoding="utf-8", ) branch = res.stdout.strip() for p in repo.glob(pattern): data = { "path": p, "metadata": { "url_source": f"{url}/tree/{branch}/{p.relative_to(repo)}", "suffix": p.suffix, }, } files.append(data) return files @st.cache_resource(show_spinner=False) def document_store(): # We're going to store the processed documents in here return MemoryDocumentStore() @st.cache_resource(show_spinner=False) def index_files(files): # We create some components text_converter = TextFileToDocument(progress_bar=False) document_cleaner = DocumentCleaner() document_splitter = TextDocumentSplitter() document_writer = DocumentWriter( document_store=document_store(), policy="overwrite" ) # And our pipeline indexing_pipeline = Pipeline() indexing_pipeline.add_component("converter", text_converter) indexing_pipeline.add_component("cleaner", document_cleaner) indexing_pipeline.add_component("splitter", document_splitter) indexing_pipeline.add_component("writer", document_writer) indexing_pipeline.connect("converter", "cleaner") indexing_pipeline.connect("cleaner", "splitter") indexing_pipeline.connect("splitter", "writer") # And now we save the documentation in our MemoryDocumentStore paths = [] metadata = [] for f in files: paths.append(f["path"]) metadata.append(f["metadata"]) indexing_pipeline.run( { "converter": { "paths": paths, "metadata": metadata, } } ) def search(question: str) -> GeneratedAnswer: retriever = MemoryBM25Retriever(document_store=document_store(), top_k=5) template = ( "Take a deep breath and think then answer given the context" "Context: {{ documents|map(attribute='text')|replace('\n', ' ')|join(';') }}" "Question: {{ query }}" "Answer:" ) prompt_builder = PromptBuilder(template) OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "") generator = GPTGenerator(api_key=OPENAI_API_KEY) answer_builder = AnswerBuilder() query_pipeline = Pipeline() query_pipeline.add_component("docs_retriever", retriever) query_pipeline.add_component("prompt_builder", prompt_builder) query_pipeline.add_component("gpt35", generator) query_pipeline.add_component("answer_builder", answer_builder) query_pipeline.connect("docs_retriever.documents", "prompt_builder.documents") query_pipeline.connect("prompt_builder.prompt", "gpt35.prompt") query_pipeline.connect("docs_retriever.documents", "answer_builder.documents") query_pipeline.connect("gpt35.replies", "answer_builder.replies") res = query_pipeline.run( { "docs_retriever": {"query": question}, "prompt_builder": {"query": question}, "answer_builder": {"query": question}, } ) return res["answer_builder"]["answers"][0] with st.status( "Downloading documentation files...", expanded=st.session_state.get("expanded", True), ) as status: files = fetch(DOCUMENTATIONS) status.update(label="Indexing documentation...") index_files(files) status.update( label="Download and indexing complete!", state="complete", expanded=False ) st.session_state["expanded"] = False st.header("🔎 Documentation finder", divider="rainbow") st.caption( f"Use this to search answers for {', '.join([d[0] for d in DOCUMENTATIONS])}" ) if question := st.text_input( label="What do you need to know?", placeholder="What is a DataFrame?" ): with st.spinner("Waiting"): answer = search(question) if not st.session_state.get("run_once", False): st.balloons() st.session_state["run_once"] = True st.markdown(answer.data) with st.expander("See sources:"): for document in answer.documents: url_source = document.metadata.get("url_source", "") st.write(url_source) if document.metadata.get("suffix") == ".md": st.markdown(document.text) else: st.write(document.text) st.divider()