File size: 6,968 Bytes
360d784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@Time    : 2023/8/7
@Author  : mashenquan
@File    : assistant.py
@Desc   : I am attempting to incorporate certain symbol concepts from UML into MetaGPT, enabling it to have the
            ability to freely construct flows through symbol concatenation. Simultaneously, I am also striving to
            make these symbols configurable and standardized, making the process of building flows more convenient.
            For more about `fork` node in activity diagrams, see: `https://www.uml-diagrams.org/activity-diagrams.html`
          This file defines a `fork` style meta role capable of generating arbitrary roles at runtime based on a
            configuration file.
@Modified By: mashenquan, 2023/8/22. A definition has been provided for the return value of _think: returning false
            indicates that further reasoning cannot continue.

"""
import asyncio
from pathlib import Path

from metagpt.actions import ActionOutput
from metagpt.actions.skill_action import ArgumentsParingAction, SkillAction
from metagpt.actions.talk_action import TalkAction
from metagpt.config import CONFIG
from metagpt.learn.skill_loader import SkillLoader
from metagpt.logs import logger
from metagpt.memory.brain_memory import BrainMemory, MessageType
from metagpt.roles import Role
from metagpt.schema import Message


class Assistant(Role):
    """Assistant for solving common issues."""

    def __init__(
        self,
        name="Lily",
        profile="An assistant",
        goal="Help to solve problem",
        constraints="Talk in {language}",
        desc="",
        *args,
        **kwargs,
    ):
        super(Assistant, self).__init__(
            name=name, profile=profile, goal=goal, constraints=constraints, desc=desc, *args, **kwargs
        )
        brain_memory = CONFIG.BRAIN_MEMORY
        self.memory = BrainMemory(**brain_memory) if brain_memory else BrainMemory()
        skill_path = Path(CONFIG.SKILL_PATH) if CONFIG.SKILL_PATH else None
        self.skills = SkillLoader(skill_yaml_file_name=skill_path)

    async def think(self) -> bool:
        """Everything will be done part by part."""
        last_talk = await self.refine_memory()
        if not last_talk:
            return False
        prompt = f"Refer to this sentence:\n {last_talk}\n"
        skills = self.skills.get_skill_list()
        for desc, name in skills.items():
            prompt += (
                f"If want you to do {desc}, return `[SKILL]: {name}` brief and clear. For instance: [SKILL]: {name}\n"
            )
        prompt += "If the preceding text presents a complete question and solution, rewrite and return `[SOLUTION]: {problem}` brief and clear. For instance: [SOLUTION]: Solution for distributing watermelon\n"
        prompt += "If the preceding text presents an unresolved issue and its corresponding discussion, rewrite and return `[PROBLEM]: {problem}` brief and clear. For instance: [PROBLEM]: How to distribute watermelon?\n"
        prompt += "Otherwise, rewrite and return `[TALK]: {talk}` brief and clear. For instance: [TALK]: distribute watermelon"
        logger.info(prompt)
        rsp = await self._llm.aask(prompt, [])
        logger.info(rsp)
        return await self._plan(rsp, last_talk=last_talk)

    async def act(self) -> ActionOutput:
        result = await self._rc.todo.run(**CONFIG.options)
        if not result:
            return None
        if isinstance(result, str):
            msg = Message(content=result)
            output = ActionOutput(content=result)
        else:
            msg = Message(
                content=result.content, instruct_content=result.instruct_content, cause_by=type(self._rc.todo)
            )
            output = result
        self.memory.add_answer(msg)
        return output

    async def talk(self, text):
        self.memory.add_talk(Message(content=text))

    async def _plan(self, rsp: str, **kwargs) -> bool:
        skill, text = Assistant.extract_info(input_string=rsp)
        handlers = {
            MessageType.Talk.value: self.talk_handler,
            MessageType.Problem.value: self.talk_handler,
            MessageType.Skill.value: self.skill_handler,
        }
        handler = handlers.get(skill, self.talk_handler)
        return await handler(text, **kwargs)

    async def talk_handler(self, text, **kwargs) -> bool:
        history = self.memory.history_text
        action = TalkAction(
            talk=text, knowledge=self.memory.get_knowledge(), history_summary=history, llm=self._llm, **kwargs
        )
        self.add_to_do(action)
        return True

    async def skill_handler(self, text, **kwargs) -> bool:
        last_talk = kwargs.get("last_talk")
        skill = self.skills.get_skill(text)
        if not skill:
            logger.info(f"skill not found: {text}")
            return await self.talk_handler(text=last_talk, **kwargs)
        action = ArgumentsParingAction(skill=skill, llm=self._llm, **kwargs)
        await action.run(**kwargs)
        if action.args is None:
            return await self.talk_handler(text=last_talk, **kwargs)
        action = SkillAction(skill=skill, args=action.args, llm=self._llm, name=skill.name, desc=skill.description)
        self.add_to_do(action)
        return True

    async def refine_memory(self) -> str:
        history_text = self.memory.history_text
        last_talk = self.memory.last_talk
        if last_talk is None:  # No user feedback, unsure if past conversation is finished.
            return None
        if history_text == "":
            return last_talk
        history_summary = await self._llm.get_summary(history_text, max_words=500)
        if last_talk and await self._llm.is_related(last_talk, history_summary):  # Merge relevant content.
            last_talk = await self._llm.rewrite(sentence=last_talk, context=history_text)
            return last_talk

        self.memory.move_to_solution(history_summary)  # Promptly clear memory after the issue is resolved.
        return last_talk

    @staticmethod
    def extract_info(input_string):
        from metagpt.provider.openai_api import OpenAIGPTAPI

        return OpenAIGPTAPI.extract_info(input_string)

    def get_memory(self) -> str:
        return self.memory.json()

    def load_memory(self, jsn):
        try:
            self.memory = BrainMemory(**jsn)
        except Exception as e:
            logger.exception(f"load error:{e}, data:{jsn}")


async def main():
    topic = "what's apple"
    role = Assistant(language="Chinese")
    await role.talk(topic)
    while True:
        has_action = await role.think()
        if not has_action:
            break
        msg = await role.act()
        logger.info(msg)
        # Retrieve user terminal input.
        logger.info("Enter prompt")
        talk = input("You: ")
        await role.talk(talk)


if __name__ == "__main__":
    CONFIG.language = "Chinese"
    asyncio.run(main())