shenchucheng
create meatgpt webui
faf9dc6
raw
history blame
7.32 kB
#!/usr/bin/python3
# -*- coding: utf-8 -*-
from __future__ import annotations
import asyncio
from collections import deque
import contextlib
from functools import partial
import urllib.parse
from datetime import datetime
import uuid
from enum import Enum
from metagpt.logs import set_llm_stream_logfunc
import pathlib
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import StreamingResponse, RedirectResponse
from fastapi.staticfiles import StaticFiles
import fire
from pydantic import BaseModel, Field
import uvicorn
from typing import Any, Optional
from metagpt.schema import Message
from metagpt.actions.action import Action
from metagpt.actions.action_output import ActionOutput
from metagpt.config import CONFIG
from software_company import RoleRun, SoftwareCompany
class QueryAnswerType(Enum):
Query = "Q"
Answer = "A"
class SentenceType(Enum):
TEXT = "text"
HIHT = "hint"
ACTION = "action"
class MessageStatus(Enum):
COMPLETE = "complete"
class SentenceValue(BaseModel):
answer: str
class Sentence(BaseModel):
type: str
id: Optional[str] = None
value: SentenceValue
is_finished: Optional[bool] = None
class Sentences(BaseModel):
id: Optional[str] = None
action: Optional[str] = None
role: Optional[str] = None
skill: Optional[str] = None
description: Optional[str] = None
timestamp: str = datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f%z")
status: str
contents: list[dict]
class NewMsg(BaseModel):
"""Chat with MetaGPT"""
query: str = Field(description="Problem description")
config: dict[str, Any] = Field(description="Configuration information")
class ErrorInfo(BaseModel):
error: str = None
traceback: str = None
class ThinkActStep(BaseModel):
id: str
status: str
title: str
timestamp: str
description: str
content: Sentence = None
class ThinkActPrompt(BaseModel):
message_id: int = None
timestamp: str = datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f%z")
step: ThinkActStep = None
skill: Optional[str] = None
role: Optional[str] = None
def update_think(self, tc_id, action: Action):
self.step = ThinkActStep(
id=str(tc_id),
status="running",
title=action.desc,
timestamp=datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f%z"),
description=action.desc,
)
def update_act(self, message: ActionOutput | str, is_finished: bool = True):
if is_finished:
self.step.status = "finish"
self.step.content = Sentence(
type="text",
id=str(1),
value=SentenceValue(answer=message.content if is_finished else message),
is_finished=is_finished,
)
@staticmethod
def guid32():
return str(uuid.uuid4()).replace("-", "")[0:32]
@property
def prompt(self):
v = self.json(exclude_unset=True)
return urllib.parse.quote(v)
class MessageJsonModel(BaseModel):
steps: list[Sentences]
qa_type: str
created_at: datetime = datetime.now()
query_time: datetime = datetime.now()
answer_time: datetime = datetime.now()
score: Optional[int] = None
feedback: Optional[str] = None
def add_think_act(self, think_act_prompt: ThinkActPrompt):
s = Sentences(
action=think_act_prompt.step.title,
skill=think_act_prompt.skill,
description=think_act_prompt.step.description,
timestamp=think_act_prompt.timestamp,
status=think_act_prompt.step.status,
contents=[think_act_prompt.step.content.dict()],
)
self.steps.append(s)
@property
def prompt(self):
v = self.json(exclude_unset=True)
return urllib.parse.quote(v)
async def create_message(req_model: NewMsg, request: Request):
"""
Session message stream
"""
config = {k.upper(): v for k, v in req_model.config.items()}
set_context(config, uuid.uuid4().hex)
msg_queue = deque()
CONFIG.LLM_STREAM_LOG = lambda x: msg_queue.appendleft(x) if x else None
role = SoftwareCompany()
role.recv(message=Message(content=req_model.query))
answer = MessageJsonModel(
steps=[
Sentences(
contents=[
Sentence(type=SentenceType.TEXT.value, value=SentenceValue(answer=req_model.query), is_finished=True)
],
status=MessageStatus.COMPLETE.value,
)
],
qa_type=QueryAnswerType.Answer.value,
)
tc_id = 0
while True:
tc_id += 1
if request and await request.is_disconnected():
return
think_result: RoleRun = await role.think()
if not think_result: # End of conversion
break
think_act_prompt = ThinkActPrompt(role=think_result.role.profile)
think_act_prompt.update_think(tc_id, think_result)
yield think_act_prompt.prompt + "\n\n"
task = asyncio.create_task(role.act())
while not await request.is_disconnected():
if msg_queue:
think_act_prompt.update_act(msg_queue.pop(), False)
yield think_act_prompt.prompt + "\n\n"
continue
if task.done():
break
await asyncio.sleep(0.5)
act_result = await task
think_act_prompt.update_act(act_result)
yield think_act_prompt.prompt + "\n\n"
answer.add_think_act(think_act_prompt)
yield answer.prompt + "\n\n" # Notify the front-end that the message is complete.
default_llm_stream_log = partial(print, end="")
def llm_stream_log(msg):
with contextlib.suppress():
CONFIG._get("LLM_STREAM_LOG", default_llm_stream_log)(msg)
def set_context(context, uid):
context["WORKSPACE_PATH"] = pathlib.Path("workspace", uid)
for old, new in (("DEPLOYMENT_ID", "DEPLOYMENT_NAME"), ("OPENAI_API_BASE", "OPENAI_BASE_URL")):
if old in context and new not in context:
context[new] = context[old]
CONFIG.set_context(context)
return context
class ChatHandler:
@staticmethod
async def create_message(req_model: NewMsg, request: Request):
"""Message stream, using SSE."""
event = create_message(req_model, request)
headers = {"Cache-Control": "no-cache", "Connection": "keep-alive"}
return StreamingResponse(event, headers=headers, media_type="text/event-stream")
app = FastAPI()
app.mount(
"/static",
StaticFiles(directory="./static/", check_dir=True),
name="static",
)
app.add_api_route(
"/api/messages",
endpoint=ChatHandler.create_message,
methods=["post"],
summary="Session message sending (streaming response)",
)
@app.get("/{catch_all:path}")
async def catch_all(request: Request):
if request.url.path == "/":
return RedirectResponse(url="/static/index.html")
if request.url.path.startswith("/api"):
raise HTTPException(status_code=404)
new_path = f"/static{request.url.path}"
return RedirectResponse(url=new_path)
set_llm_stream_logfunc(llm_stream_log)
def main():
uvicorn.run(app="__main__:app", host="0.0.0.0", port=7860)
if __name__ == "__main__":
fire.Fire(main)