import streamlit as st import degirum as dg from PIL import Image import torch import numpy as np import torch.nn.functional as F import clip import cv2 # Compute the cosine similarity between two vectors. def cosine_similarity(a, b): return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)) def compute_text_embeddings(text_prompts): device = "cuda" if torch.cuda.is_available() else "cpu" clip_model, _ = clip.load("RN50", device=device) text_embeddings = [] for text_prompt in text_prompts: text = clip.tokenize(text_prompt).to(device) text_embedding = clip_model.encode_text(text) text_embeddings.append(text_embedding.cpu().detach().numpy().tolist()) return text_embeddings zoo=dg.connect(dg.CLOUD,zoo_url='https://cs.degirum.com/degirum/kvk_upload_test', token="dg_ZPNjDPnAPpoZiykpFz2CnoYaAYf6ewBxwDCBo")#,token=st.secrets["DG_TOKEN"]) st.title('DeGirum CLIP model Demo') with st.sidebar: st.header('Specify Model Options Below') prompts = st.text_area("Enter text prompts (comma-separated):", value="People Running, People Talking, People Fighting, People Laughing, People Dancing") prompts = [prompt.strip() for prompt in prompts.split(',')] st.text('Upload an image. Then click on the submit button') with st.form("model_form"): uploaded_file=st.file_uploader('input image') submitted = st.form_submit_button("Submit") embeddings = compute_text_embeddings(prompts) if submitted: model=zoo.load_model('clip--224x224_float_openvino_cpu_4', input_image_format = "RAW" ) image = Image.open(uploaded_file) opencv_image = np.array(image) opencv_image = cv2.cvtColor(opencv_image, cv2.COLOR_RGB2BGR) predictions=model(opencv_image).results[0]["data"] dg_cloud_output_reshaped = predictions.reshape(-1) similarities = [cosine_similarity(dg_cloud_output_reshaped, np.array(embedding).reshape(-1)) for embedding in embeddings] similarities_tensor = torch.tensor(similarities, dtype=torch.float32) softmax_scores = F.softmax(similarities_tensor, dim=0) max_index = torch.argmax(softmax_scores).item() st.image(image, caption="Uploaded Image", use_column_width=True) for index, prompt in enumerate(prompts): st.write(f"{prompt} - {softmax_scores[index]*100:.2f}%") # st.write(predictions.results)