Update app.py
Browse files
app.py
CHANGED
@@ -22,11 +22,10 @@ except FileNotFoundError:
|
|
22 |
st.stop()
|
23 |
|
24 |
def tokenize(text):
|
25 |
-
# Ensure the text is a string before splitting
|
26 |
if isinstance(text, str):
|
27 |
return text.split()
|
28 |
else:
|
29 |
-
return []
|
30 |
|
31 |
def embed_text(text_series, fasttext_model):
|
32 |
embeddings = []
|
@@ -40,26 +39,21 @@ def embed_text(text_series, fasttext_model):
|
|
40 |
return np.array(embeddings)
|
41 |
|
42 |
def preprocess_input(query, title, description, url, fasttext_model):
|
43 |
-
# Convert None or NaN to an empty string to avoid errors during tokenization
|
44 |
query = str(query) if pd.notna(query) else ''
|
45 |
title = str(title) if pd.notna(title) else ''
|
46 |
description = str(description) if pd.notna(description) else ''
|
47 |
url = str(url) if pd.notna(url) else ''
|
48 |
|
49 |
-
# Embed each text field using FastText
|
50 |
query_ft = embed_text(pd.Series([query]), fasttext_model)
|
51 |
title_ft = embed_text(pd.Series([title]), fasttext_model)
|
52 |
description_ft = embed_text(pd.Series([description]), fasttext_model)
|
53 |
url_ft = embed_text(pd.Series([url]), fasttext_model)
|
54 |
|
55 |
-
# Combine embeddings into a single array
|
56 |
combined_features = np.hstack([query_ft, title_ft, description_ft, url_ft])
|
57 |
|
58 |
-
# Convert combined_features to a DMatrix for XGBoost
|
59 |
dmatrix = xgb.DMatrix(combined_features)
|
60 |
return dmatrix
|
61 |
|
62 |
-
# Function to extract title and description from a URL
|
63 |
def extract_title_description(url):
|
64 |
headers = {
|
65 |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.5112.81 Safari/537.36'
|
@@ -74,11 +68,10 @@ def extract_title_description(url):
|
|
74 |
except Exception as e:
|
75 |
return 'Error extracting title', 'Error extracting description'
|
76 |
|
77 |
-
# Function to make predictions
|
78 |
def predict(query, title, description, url, fasttext_model):
|
79 |
dmatrix = preprocess_input(query, title, description, url, fasttext_model)
|
80 |
-
probability = model.predict(dmatrix, validate_features=False)[0]
|
81 |
-
binary_prediction = int(probability >= 0.5)
|
82 |
return binary_prediction, probability
|
83 |
|
84 |
# Streamlit interface
|
@@ -101,8 +94,6 @@ with tab1:
|
|
101 |
binary_result, confidence = predict(query, title, description, url, fasttext_model)
|
102 |
st.write(f'Predicted +/-: {binary_result}')
|
103 |
st.write(f'Conf.: {confidence:.2%}')
|
104 |
-
|
105 |
-
# Convert confidence to a percentage and cast to int
|
106 |
confidence_percentage = int(confidence * 100)
|
107 |
st.progress(confidence_percentage)
|
108 |
else:
|
@@ -115,8 +106,6 @@ with tab2:
|
|
115 |
|
116 |
if uploaded_file is not None:
|
117 |
df = pd.read_csv(uploaded_file)
|
118 |
-
|
119 |
-
# Select only the columns necessary for inference
|
120 |
required_columns = ['Query', 'Title', 'Description', 'URL']
|
121 |
|
122 |
if set(required_columns).issubset(df.columns):
|
@@ -127,15 +116,12 @@ with tab2:
|
|
127 |
predictions.append(binary_result)
|
128 |
confidences.append(confidence)
|
129 |
|
130 |
-
# Add binary predictions and confidence to the DataFrame
|
131 |
df['+/-'] = predictions
|
132 |
df['Conf.'] = [f"{conf:.2%}" for conf in confidences]
|
133 |
|
134 |
-
# Reorder the columns to put '+/-' and 'Conf.' at the front
|
135 |
cols = ['+/-', 'Conf.'] + [col for col in df.columns if col not in ['+/-', 'Conf.']]
|
136 |
df = df[cols]
|
137 |
|
138 |
-
# Display and allow download of results
|
139 |
st.write(df)
|
140 |
st.download_button("Download Predictions", df.to_csv(index=False), "predictions.csv")
|
141 |
else:
|
@@ -149,11 +135,13 @@ with tab3:
|
|
149 |
|
150 |
if st.button('Scrape A/B'):
|
151 |
title_A, description_A = extract_title_description(url)
|
|
|
|
|
152 |
st.write(f'Extracted Title A: {title_A}')
|
153 |
st.write(f'Extracted Description A: {description_A}')
|
154 |
|
155 |
-
title_B = st.text_input('Title B', value=title_A)
|
156 |
-
description_B = st.text_area('Description B', value=description_A)
|
157 |
|
158 |
if st.button('Predict A/B'):
|
159 |
if query and url:
|
@@ -163,7 +151,6 @@ with tab3:
|
|
163 |
st.write(f'Results for A: Predicted +/-: {binary_result_A}, Conf.: {confidence_A:.2%}')
|
164 |
st.write(f'Results for B: Predicted +/-: {binary_result_B}, Conf.: {confidence_B:.2%}')
|
165 |
|
166 |
-
# Determine improvement
|
167 |
if binary_result_A == 1 and binary_result_B == 0:
|
168 |
st.write("B is worse than A")
|
169 |
elif binary_result_A == 0 and binary_result_B == 1:
|
|
|
22 |
st.stop()
|
23 |
|
24 |
def tokenize(text):
|
|
|
25 |
if isinstance(text, str):
|
26 |
return text.split()
|
27 |
else:
|
28 |
+
return []
|
29 |
|
30 |
def embed_text(text_series, fasttext_model):
|
31 |
embeddings = []
|
|
|
39 |
return np.array(embeddings)
|
40 |
|
41 |
def preprocess_input(query, title, description, url, fasttext_model):
|
|
|
42 |
query = str(query) if pd.notna(query) else ''
|
43 |
title = str(title) if pd.notna(title) else ''
|
44 |
description = str(description) if pd.notna(description) else ''
|
45 |
url = str(url) if pd.notna(url) else ''
|
46 |
|
|
|
47 |
query_ft = embed_text(pd.Series([query]), fasttext_model)
|
48 |
title_ft = embed_text(pd.Series([title]), fasttext_model)
|
49 |
description_ft = embed_text(pd.Series([description]), fasttext_model)
|
50 |
url_ft = embed_text(pd.Series([url]), fasttext_model)
|
51 |
|
|
|
52 |
combined_features = np.hstack([query_ft, title_ft, description_ft, url_ft])
|
53 |
|
|
|
54 |
dmatrix = xgb.DMatrix(combined_features)
|
55 |
return dmatrix
|
56 |
|
|
|
57 |
def extract_title_description(url):
|
58 |
headers = {
|
59 |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.5112.81 Safari/537.36'
|
|
|
68 |
except Exception as e:
|
69 |
return 'Error extracting title', 'Error extracting description'
|
70 |
|
|
|
71 |
def predict(query, title, description, url, fasttext_model):
|
72 |
dmatrix = preprocess_input(query, title, description, url, fasttext_model)
|
73 |
+
probability = model.predict(dmatrix, validate_features=False)[0]
|
74 |
+
binary_prediction = int(probability >= 0.5)
|
75 |
return binary_prediction, probability
|
76 |
|
77 |
# Streamlit interface
|
|
|
94 |
binary_result, confidence = predict(query, title, description, url, fasttext_model)
|
95 |
st.write(f'Predicted +/-: {binary_result}')
|
96 |
st.write(f'Conf.: {confidence:.2%}')
|
|
|
|
|
97 |
confidence_percentage = int(confidence * 100)
|
98 |
st.progress(confidence_percentage)
|
99 |
else:
|
|
|
106 |
|
107 |
if uploaded_file is not None:
|
108 |
df = pd.read_csv(uploaded_file)
|
|
|
|
|
109 |
required_columns = ['Query', 'Title', 'Description', 'URL']
|
110 |
|
111 |
if set(required_columns).issubset(df.columns):
|
|
|
116 |
predictions.append(binary_result)
|
117 |
confidences.append(confidence)
|
118 |
|
|
|
119 |
df['+/-'] = predictions
|
120 |
df['Conf.'] = [f"{conf:.2%}" for conf in confidences]
|
121 |
|
|
|
122 |
cols = ['+/-', 'Conf.'] + [col for col in df.columns if col not in ['+/-', 'Conf.']]
|
123 |
df = df[cols]
|
124 |
|
|
|
125 |
st.write(df)
|
126 |
st.download_button("Download Predictions", df.to_csv(index=False), "predictions.csv")
|
127 |
else:
|
|
|
135 |
|
136 |
if st.button('Scrape A/B'):
|
137 |
title_A, description_A = extract_title_description(url)
|
138 |
+
st.session_state['title_A'] = title_A
|
139 |
+
st.session_state['description_A'] = description_A
|
140 |
st.write(f'Extracted Title A: {title_A}')
|
141 |
st.write(f'Extracted Description A: {description_A}')
|
142 |
|
143 |
+
title_B = st.text_input('Title B', value=st.session_state.get('title_A', ''))
|
144 |
+
description_B = st.text_area('Description B', value=st.session_state.get('description_A', ''))
|
145 |
|
146 |
if st.button('Predict A/B'):
|
147 |
if query and url:
|
|
|
151 |
st.write(f'Results for A: Predicted +/-: {binary_result_A}, Conf.: {confidence_A:.2%}')
|
152 |
st.write(f'Results for B: Predicted +/-: {binary_result_B}, Conf.: {confidence_B:.2%}')
|
153 |
|
|
|
154 |
if binary_result_A == 1 and binary_result_B == 0:
|
155 |
st.write("B is worse than A")
|
156 |
elif binary_result_A == 0 and binary_result_B == 1:
|