dejanseo commited on
Commit
af776bb
1 Parent(s): 65ec5a6

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +168 -0
  2. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ import torch.nn.functional as F
4
+ from torch.nn.functional import softmax
5
+ from transformers import AlbertTokenizerFast, AutoModelForTokenClassification
6
+ import pandas as pd
7
+ import trafilatura
8
+
9
+ # Set Streamlit configuration
10
+ st.set_page_config(layout="wide", page_title="LinkBERT")
11
+
12
+ # Load model and tokenizer
13
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
+ tokenizer = AlbertTokenizerFast.from_pretrained("dejanseo/LinkBERT-mini")
15
+ model = AutoModelForTokenClassification.from_pretrained("dejanseo/LinkBERT-mini").to(device)
16
+ model.eval()
17
+
18
+ # Functions
19
+
20
+ def tokenize_with_indices(text: str):
21
+ encoded = tokenizer.encode_plus(text, return_offsets_mapping=True, add_special_tokens=True)
22
+ return encoded['input_ids'], encoded['offset_mapping']
23
+
24
+ def fetch_and_extract_content(url: str):
25
+ downloaded = trafilatura.fetch_url(url)
26
+ if downloaded:
27
+ content = trafilatura.extract(downloaded, include_comments=False, include_tables=False)
28
+ return content
29
+ return None
30
+
31
+ def process_text(inputs: str, confidence_threshold: float):
32
+ max_chunk_length = 512 - 2
33
+ words = inputs.split()
34
+ chunk_texts = []
35
+ current_chunk = []
36
+ current_length = 0
37
+ for word in words:
38
+ if len(tokenizer.tokenize(word)) + current_length > max_chunk_length:
39
+ chunk_texts.append(" ".join(current_chunk))
40
+ current_chunk = [word]
41
+ current_length = len(tokenizer.tokenize(word))
42
+ else:
43
+ current_chunk.append(word)
44
+ current_length += len(tokenizer.tokenize(word))
45
+ chunk_texts.append(" ".join(current_chunk))
46
+
47
+ df_data = {
48
+ 'Word': [],
49
+ 'Prediction': [],
50
+ 'Confidence': [],
51
+ 'Start': [],
52
+ 'End': []
53
+ }
54
+ reconstructed_text = ""
55
+ original_position_offset = 0
56
+
57
+ for chunk in chunk_texts:
58
+ input_ids, token_offsets = tokenize_with_indices(chunk)
59
+ predictions = []
60
+
61
+ input_ids_tensor = torch.tensor(input_ids).unsqueeze(0).to(device)
62
+ with torch.no_grad():
63
+ outputs = model(input_ids_tensor)
64
+ logits = outputs.logits
65
+ predictions = torch.argmax(logits, dim=-1).squeeze().tolist()
66
+ softmax_scores = F.softmax(logits, dim=-1).squeeze().tolist()
67
+
68
+ word_info = {}
69
+
70
+ for idx, (start, end) in enumerate(token_offsets):
71
+ if idx == 0 or idx == len(token_offsets) - 1:
72
+ continue
73
+
74
+ word_start = start
75
+ while word_start > 0 and chunk[word_start-1] != ' ':
76
+ word_start -= 1
77
+
78
+ if word_start not in word_info:
79
+ word_info[word_start] = {'prediction': 0, 'confidence': 0.0, 'subtokens': []}
80
+
81
+ confidence_percentage = softmax_scores[idx][predictions[idx]] * 100
82
+
83
+ if predictions[idx] == 1 and confidence_percentage >= confidence_threshold:
84
+ word_info[word_start]['prediction'] = 1
85
+
86
+ word_info[word_start]['confidence'] = max(word_info[word_start]['confidence'], confidence_percentage)
87
+ word_info[word_start]['subtokens'].append((start, end, chunk[start:end]))
88
+
89
+ last_end = 0
90
+ for word_start in sorted(word_info.keys()):
91
+ word_data = word_info[word_start]
92
+ for subtoken_start, subtoken_end, subtoken_text in word_data['subtokens']:
93
+ escaped_subtoken_text = subtoken_text.replace('$', '\\$') # Perform replacement outside f-string
94
+ if last_end < subtoken_start:
95
+ reconstructed_text += chunk[last_end:subtoken_start]
96
+ if word_data['prediction'] == 1:
97
+ reconstructed_text += f"<span style='background-color: rgba(0, 255, 0); display: inline;'>{escaped_subtoken_text}</span>"
98
+ else:
99
+ reconstructed_text += escaped_subtoken_text
100
+ last_end = subtoken_end
101
+
102
+ df_data['Word'].append(escaped_subtoken_text)
103
+ df_data['Prediction'].append(word_data['prediction'])
104
+ df_data['Confidence'].append(word_info[word_start]['confidence'])
105
+ df_data['Start'].append(subtoken_start + original_position_offset)
106
+ df_data['End'].append(subtoken_end + original_position_offset)
107
+
108
+ original_position_offset += len(chunk) + 1
109
+
110
+ reconstructed_text += chunk[last_end:].replace('$', '\\$')
111
+
112
+ df_tokens = pd.DataFrame(df_data)
113
+ return reconstructed_text, df_tokens
114
+
115
+ # Streamlit Interface
116
+
117
+ st.title('LinkBERT')
118
+ st.markdown("""
119
+ LinkBERT is a model developed by [Dejan Marketing](https://dejanmarketing.com/) designed to predict natural link placement within web content. You can either enter plain text or the URL for automated plain text extraction. To reduce the number of link predictions increase the threshold slider value.
120
+ """)
121
+
122
+ confidence_threshold = st.slider('Confidence Threshold', 50, 100, 50)
123
+
124
+ tab1, tab2 = st.tabs(["Text Input", "URL Input"])
125
+
126
+ with tab1:
127
+ user_input = st.text_area("Enter text to process:")
128
+ if st.button('Process Text'):
129
+ highlighted_text, df_tokens = process_text(user_input, confidence_threshold)
130
+ st.markdown(highlighted_text, unsafe_allow_html=True)
131
+ st.dataframe(df_tokens)
132
+
133
+ with tab2:
134
+ url_input = st.text_input("Enter URL to process:")
135
+ if st.button('Fetch and Process'):
136
+ content = fetch_and_extract_content(url_input)
137
+ if content:
138
+ highlighted_text, df_tokens = process_text(content, confidence_threshold)
139
+ st.markdown(highlighted_text, unsafe_allow_html=True)
140
+ st.dataframe(df_tokens)
141
+ else:
142
+ st.error("Could not fetch content from the URL. Please check the URL and try again.")
143
+
144
+ # Additional information at the end
145
+ st.divider()
146
+ st.markdown("""
147
+
148
+ ## Applications of LinkBERT
149
+
150
+ LinkBERT's applications are vast and diverse, tailored to enhance both the efficiency and quality of web content creation and analysis:
151
+
152
+ - **Anchor Text Suggestion:** Acts as a mechanism during internal link optimization, suggesting potential anchor texts to web authors.
153
+ - **Evaluation of Existing Links:** Assesses the naturalness of link placements within existing content, aiding in the refinement of web pages.
154
+ - **Link Placement Guide:** Offers guidance to link builders by suggesting optimal placement for links within content.
155
+ - **Anchor Text Idea Generator:** Provides creative anchor text suggestions to enrich content and improve SEO strategies.
156
+ - **Spam and Inorganic SEO Detection:** Helps identify unnatural link patterns, contributing to the detection of spam and inorganic SEO tactics.
157
+
158
+ ## Training and Performance
159
+
160
+ LinkBERT was fine-tuned on a dataset of organic web content and editorial links.
161
+
162
+ [Watch the video](https://www.youtube.com/watch?v=A0ZulyVqjZo)
163
+
164
+ # Engage Our Team
165
+ Interested in using this in an automated pipeline for bulk link prediction?
166
+
167
+ Please [book an appointment](https://dejanmarketing.com/conference/) to discuss your needs.
168
+ """)
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ streamlit
2
+ torch
3
+ transformers
4
+ pandas
5
+ trafilatura