Dhritiman Sagar
Use torch no grad for predictions
3b7b8ef
import datasets
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
import gradio as gr
import torch
import transformers
dataset = datasets.load_dataset("beans")
extractor = AutoFeatureExtractor.from_pretrained("saved_model_files")
model = AutoModelForImageClassification.from_pretrained("saved_model_files")
labels = dataset['train'].features['labels'].names
def classify(im):
features = extractor(im, return_tensors='pt')
with torch.no_grad():
logits = model(features["pixel_values"])[-1]
probability = torch.nn.functional.softmax(logits, dim=-1)
probs = probability[0].detach().numpy()
confidences = {label: float(probs[i]) for i, label in enumerate(labels)}
return confidences
interface = gr.Interface(classify, inputs='image', outputs='label', title='Leaf classification on beans dataset',
description='Sample fine-tuning a ViT for leaf classification. Upload a picture of a leaf to see if it is healthy, has angular leaf spots or bean rust.')
interface.launch()