lyrics / app.py
demomodels's picture
Added audio separation
0c16d63 verified
import gradio as gr
import torch
import json
import numpy as np
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
# This code was omitted for deployment reasons (model is too RAM-hungry)
# from speechbrain.inference.separation import SepformerSeparation as separator
# import torchaudio
# model = separator.from_hparams(source="speechbrain/sepformer-whamr16k", savedir='pretrained_models/sepformer-whamr16k')
# def separate_speech(path):
# est_sources = model.separate_file(path=path)
# output_path = "output.wav"
# torchaudio.save(output_path, est_sources[:, :, 0].detach().cpu(), 16000)
# return output_path
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-tiny"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=15,
batch_size=1,
return_timestamps=True,
torch_dtype=torch_dtype,
device=device,
)
def transcribe_speech(filepath):
result = pipe(filepath)['chunks']
for item in result:
item['timestamp'] = list(item['timestamp'])
return json.dumps(result)
demo = gr.Blocks()
file_transcribe = gr.Interface(
fn=transcribe_speech,
inputs=gr.Audio(sources="upload", type="filepath"),
outputs="text",
)
with demo:
gr.TabbedInterface(
[file_transcribe],
["Song Lyrics"],
)
demo.launch(debug=True)