|
import gradio as gr |
|
import math |
|
|
|
|
|
def convert_params(params): |
|
if params == 0: |
|
return "0" |
|
size_name = ("", "K", "M", "B", "T", "P", "E", "Z", "Y") |
|
i = int(math.floor(math.log(params, 1000))) |
|
p = math.pow(1000, i) |
|
s = round(params / p, 2) |
|
return "%s %s" % (s, size_name[i]) |
|
|
|
|
|
def calc_params(vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio): |
|
if tied_embeddings: |
|
embedding_params = hidden_size * vocab_size |
|
else: |
|
embedding_params = 2 * hidden_size * vocab_size |
|
position_embedding_params = hidden_size * sequence_length |
|
attention_params = int(2 * (1 + kv_size_ratio) * num_layers * hidden_size * hidden_size) |
|
layernorm_params = 13 * num_layers * hidden_size |
|
|
|
if moe: |
|
num_expert_layers = num_layers / expert_interval |
|
ffn_expert_params = num_mlp_linears * ffn_expansion_factor * num_expert_layers * num_experts * hidden_size * hidden_size |
|
ffn_dense_params = num_mlp_linears * ffn_expansion_factor * (num_layers - num_expert_layers) * hidden_size * hidden_size |
|
ffn_params = ffn_expert_params + ffn_dense_params |
|
gating_params = num_expert_layers * hidden_size * num_experts |
|
else: |
|
ffn_params = num_mlp_linears * ffn_expansion_factor * num_layers * hidden_size * hidden_size |
|
|
|
total_params = embedding_params + attention_params + ffn_params + position_embedding_params + layernorm_params |
|
|
|
if moe: |
|
total_params += gating_params |
|
|
|
result = f""" |
|
Embedding parameters: {convert_params(embedding_params)} |
|
Attention parameters: {convert_params(attention_params)} |
|
FFN parameters: {convert_params(ffn_params)} |
|
{'Gating parameters: ' + convert_params(gating_params) if moe else ''} |
|
Total Params in the Model: {convert_params(total_params)} |
|
""" |
|
return result |
|
|
|
|
|
def calc_mem(args): |
|
dp_degree = args.num_gpus / (args.tensor_parallel_size * args.pipeline_parallel_size) |
|
embed_params = 2 * args.vocab_size * args.hidden_size |
|
positional_params = args.hidden_size * args.sequence_length |
|
ln_params = 8 * args.hidden_size * args.num_layers + (2 * args.hidden_size) |
|
attention_params = int(2 * (1 + args.kv_size_ratio) * args.num_layers * args.hidden_size * args.hidden_size) |
|
mlp_params = args.num_mlp_linears * args.num_layers * args.hidden_size * args.ffn_expansion_factor * args.hidden_size |
|
total_params = embed_params + positional_params + ln_params + attention_params + mlp_params |
|
|
|
bytes_per_param = args.low_prec_bytes_per_val if args.is_mixed_precision else args.high_prec_bytes_per_val |
|
model_mem = total_params * bytes_per_param |
|
per_gpu_model_mem = model_mem / (args.tensor_parallel_size * args.pipeline_parallel_size) |
|
per_gpu_mem_gib = per_gpu_model_mem / 1024**3 + args.misc_mem_gib |
|
|
|
return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Tabs(): |
|
with gr.TabItem("Parameter Calculation"): |
|
vocab_size = gr.Number(label="Vocab Size", value=51200) |
|
tied_embeddings = gr.Checkbox(label="Tied Embeddings", value=False) |
|
hidden_size = gr.Number(label="Hidden Size", value=6144) |
|
sequence_length = gr.Number(label="Sequence Length", value=2048) |
|
num_layers = gr.Number(label="Number of Layers", value=44) |
|
ffn_expansion_factor = gr.Number(label="FFN Expansion Factor", value=4) |
|
num_mlp_linears = gr.Number(label="Number of Linear Layers per MLP Block", value=2) |
|
kv_size_ratio = gr.Number(label="KV Size Ratio", value=1.0) |
|
|
|
with gr.Accordion("MoE Parameters", open=False): |
|
moe = gr.Checkbox(label="MoE", value=False) |
|
num_experts = gr.Number(label="Number of Experts", value=8) |
|
expert_interval = gr.Number(label="Expert Interval", value=1) |
|
topk = gr.Number(label="Top k Routing", value=1) |
|
|
|
result = gr.Textbox(label="Output", interactive=False) |
|
calculate_button = gr.Button("Calculate") |
|
calculate_button.click(calc_params, inputs=[vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio], outputs=result) |
|
|
|
with gr.TabItem("Memory Calculation"): |
|
hf_model_name_or_path = gr.Textbox(label="HuggingFace Model Name or Path", value="") |
|
num_gpus = gr.Number(label="Number of GPUs", value=1) |
|
tensor_parallel_size = gr.Number(label="Tensor Parallel Size", value=1) |
|
pipeline_parallel_size = gr.Number(label="Pipeline Parallel Size", value=1) |
|
batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=8) |
|
sequence_length = gr.Number(label="Sequence Length", value=2048) |
|
vocab_size = gr.Number(label="Vocab Size", value=51200) |
|
hidden_size = gr.Number(label="Hidden Size", value=6144) |
|
num_attention_heads = gr.Number(label="Number of Attention Heads", value=64) |
|
num_layers = gr.Number(label="Number of Layers", value=44) |
|
ffn_expansion_factor = gr.Number(label="FFN Expansion Factor", value=4) |
|
is_mixed_precision = gr.Checkbox(label="Mixed Precision", value=True) |
|
misc_mem_gib = gr.Number(label="Misc Memory Overhead (GiB)", value=5) |
|
|
|
memory_result = gr.Textbox(label="Memory Calculation Result", interactive=False) |
|
calc_memory_button = gr.Button("Calculate Memory") |
|
calc_memory_button.click(calc_mem, inputs=[num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib], outputs=memory_result) |
|
|
|
demo.launch() |
|
|