Commit
•
5d70faf
1
Parent(s):
ef8c30b
Update app.py
Browse files
app.py
CHANGED
@@ -12,86 +12,105 @@ def convert_params(params):
|
|
12 |
s = round(params / p, 2)
|
13 |
return "%s %s" % (s, size_name[i])
|
14 |
|
15 |
-
#
|
16 |
-
def
|
17 |
-
|
18 |
-
if getattr(args, key) is None:
|
19 |
-
setattr(args, key, value)
|
20 |
-
return args
|
21 |
-
|
22 |
-
# Set value if it's None, else use the config value
|
23 |
-
def set_if_none(args, key, config, config_key, defaults):
|
24 |
-
if getattr(args, key) is None:
|
25 |
-
setattr(args, key, config.get(config_key, defaults[key]))
|
26 |
-
return args
|
27 |
-
|
28 |
-
# Get Hugging Face model arguments
|
29 |
-
def get_hf_model_args(args, defaults):
|
30 |
-
if args.hf_model_name_or_path:
|
31 |
try:
|
32 |
-
config = AutoConfig.from_pretrained(
|
33 |
except Exception as e:
|
34 |
-
|
35 |
|
36 |
-
# Update
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
# ---- Memory Calculation ---- #
|
46 |
def calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib):
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
"vocab_size": 51200,
|
54 |
-
"sequence_length": 2048,
|
55 |
-
"ffn_expansion_factor": 4,
|
56 |
-
}
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
args = Args(hf_model_name_or_path=hf_model_name_or_path, num_gpus=num_gpus, tensor_parallel_size=tensor_parallel_size,
|
65 |
-
pipeline_parallel_size=pipeline_parallel_size, batch_size_per_gpu=batch_size_per_gpu, sequence_length=sequence_length,
|
66 |
-
vocab_size=vocab_size, hidden_size=hidden_size, num_attention_heads=num_attention_heads, num_layers=num_layers,
|
67 |
-
ffn_expansion_factor=ffn_expansion_factor, is_mixed_precision=is_mixed_precision, misc_mem_gib=misc_mem_gib)
|
68 |
-
|
69 |
-
# Fetch Hugging Face model args if a model is provided
|
70 |
-
args = get_hf_model_args(args, defaults)
|
71 |
-
|
72 |
-
dp_degree = args.num_gpus / (args.tensor_parallel_size * args.pipeline_parallel_size)
|
73 |
-
embed_params = 2 * args.vocab_size * args.hidden_size
|
74 |
-
positional_params = args.hidden_size * args.sequence_length
|
75 |
-
ln_params = 8 * args.hidden_size * args.num_layers + (2 * args.hidden_size)
|
76 |
-
attention_params = int(2 * (1 + args.ffn_expansion_factor) * args.num_layers * args.hidden_size * args.hidden_size)
|
77 |
-
mlp_params = args.ffn_expansion_factor * args.num_layers * args.hidden_size * args.hidden_size
|
78 |
total_params = embed_params + positional_params + ln_params + attention_params + mlp_params
|
79 |
|
80 |
-
bytes_per_param = 2 if
|
81 |
model_mem = total_params * bytes_per_param
|
82 |
-
per_gpu_mem_gib = (model_mem / (
|
83 |
|
84 |
return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB"
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
# ---- Gradio Interface ---- #
|
87 |
with gr.Blocks() as demo:
|
88 |
with gr.Tabs():
|
89 |
-
with gr.TabItem("
|
|
|
90 |
vocab_size = gr.Number(label="Vocab Size", value=51200)
|
91 |
tied_embeddings = gr.Checkbox(label="Tied Embeddings", value=False)
|
92 |
hidden_size = gr.Number(label="Hidden Size", value=6144)
|
93 |
sequence_length = gr.Number(label="Sequence Length", value=2048)
|
94 |
num_layers = gr.Number(label="Number of Layers", value=44)
|
|
|
95 |
ffn_expansion_factor = gr.Number(label="FFN Expansion Factor", value=4)
|
96 |
num_mlp_linears = gr.Number(label="Number of Linear Layers per MLP Block", value=2)
|
97 |
kv_size_ratio = gr.Number(label="KV Size Ratio", value=1.0)
|
@@ -102,27 +121,17 @@ with gr.Blocks() as demo:
|
|
102 |
expert_interval = gr.Number(label="Expert Interval", value=1)
|
103 |
topk = gr.Number(label="Top k Routing", value=1)
|
104 |
|
105 |
-
result = gr.Textbox(label="Output", interactive=False)
|
106 |
-
calculate_button = gr.Button("Calculate")
|
107 |
-
calculate_button.click(calc_params, inputs=[vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio], outputs=result)
|
108 |
-
|
109 |
-
with gr.TabItem("Memory Calculation"):
|
110 |
-
hf_model_name_or_path = gr.Textbox(label="HuggingFace Model Name or Path", value="")
|
111 |
num_gpus = gr.Number(label="Number of GPUs", value=1)
|
112 |
tensor_parallel_size = gr.Number(label="Tensor Parallel Size", value=1)
|
113 |
pipeline_parallel_size = gr.Number(label="Pipeline Parallel Size", value=1)
|
114 |
batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=8)
|
115 |
-
sequence_length = gr.Number(label="Sequence Length", value=2048)
|
116 |
-
vocab_size = gr.Number(label="Vocab Size", value=51200)
|
117 |
-
hidden_size = gr.Number(label="Hidden Size", value=6144)
|
118 |
-
num_attention_heads = gr.Number(label="Number of Attention Heads", value=64)
|
119 |
-
num_layers = gr.Number(label="Number of Layers", value=44)
|
120 |
-
ffn_expansion_factor = gr.Number(label="FFN Expansion Factor", value=4)
|
121 |
is_mixed_precision = gr.Checkbox(label="Mixed Precision", value=True)
|
122 |
misc_mem_gib = gr.Number(label="Misc Memory Overhead (GiB)", value=5)
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
127 |
|
128 |
demo.launch()
|
|
|
12 |
s = round(params / p, 2)
|
13 |
return "%s %s" % (s, size_name[i])
|
14 |
|
15 |
+
# Get Hugging Face model configuration and update the parameters
|
16 |
+
def get_hf_model_args(hf_model_name_or_path, num_layers, hidden_size, num_attention_heads, vocab_size, sequence_length):
|
17 |
+
if hf_model_name_or_path:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
try:
|
19 |
+
config = AutoConfig.from_pretrained(hf_model_name_or_path, trust_remote_code=True).to_dict()
|
20 |
except Exception as e:
|
21 |
+
return None, f"Error fetching Hugging Face model: {str(e)}"
|
22 |
|
23 |
+
# Update parameters with the Hugging Face model config values
|
24 |
+
num_layers = config.get("num_hidden_layers", num_layers)
|
25 |
+
hidden_size = config.get("hidden_size", hidden_size)
|
26 |
+
num_attention_heads = config.get("num_attention_heads", num_attention_heads)
|
27 |
+
vocab_size = config.get("vocab_size", vocab_size)
|
28 |
+
sequence_length = config.get("max_position_embeddings", sequence_length)
|
29 |
+
|
30 |
+
return {
|
31 |
+
"num_layers": num_layers,
|
32 |
+
"hidden_size": hidden_size,
|
33 |
+
"num_attention_heads": num_attention_heads,
|
34 |
+
"vocab_size": vocab_size,
|
35 |
+
"sequence_length": sequence_length,
|
36 |
+
}, None
|
37 |
+
|
38 |
+
# ---- Parameter Calculation ---- #
|
39 |
+
def calc_params(vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio):
|
40 |
+
if tied_embeddings:
|
41 |
+
embedding_params = hidden_size * vocab_size
|
42 |
+
else:
|
43 |
+
embedding_params = 2 * hidden_size * vocab_size
|
44 |
+
position_embedding_params = hidden_size * sequence_length
|
45 |
+
attention_params = int(2 * (1 + kv_size_ratio) * num_layers * hidden_size * hidden_size)
|
46 |
+
layernorm_params = 13 * num_layers * hidden_size
|
47 |
+
|
48 |
+
if moe:
|
49 |
+
num_expert_layers = num_layers / expert_interval
|
50 |
+
ffn_expert_params = num_mlp_linears * ffn_expansion_factor * num_expert_layers * num_experts * hidden_size * hidden_size
|
51 |
+
ffn_dense_params = num_mlp_linears * ffn_expansion_factor * (num_layers - num_expert_layers) * hidden_size * hidden_size
|
52 |
+
ffn_params = ffn_expert_params + ffn_dense_params
|
53 |
+
gating_params = num_expert_layers * hidden_size * num_experts
|
54 |
+
else:
|
55 |
+
ffn_params = num_mlp_linears * ffn_expansion_factor * num_layers * hidden_size * hidden_size
|
56 |
+
|
57 |
+
total_params = embedding_params + attention_params + ffn_params + position_embedding_params + layernorm_params
|
58 |
+
|
59 |
+
if moe:
|
60 |
+
total_params += gating_params
|
61 |
+
|
62 |
+
return f"""
|
63 |
+
Embedding parameters: {convert_params(embedding_params)}
|
64 |
+
Attention parameters: {convert_params(attention_params)}
|
65 |
+
FFN parameters: {convert_params(ffn_params)}
|
66 |
+
{'Gating parameters: ' + convert_params(gating_params) if moe else ''}
|
67 |
+
Total Params in the Model: {convert_params(total_params)}
|
68 |
+
"""
|
69 |
|
70 |
# ---- Memory Calculation ---- #
|
71 |
def calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib):
|
72 |
+
model_params, hf_error = get_hf_model_args(hf_model_name_or_path, num_layers, hidden_size, num_attention_heads, vocab_size, sequence_length)
|
73 |
+
|
74 |
+
if hf_error:
|
75 |
+
return hf_error
|
76 |
|
77 |
+
num_layers = model_params["num_layers"]
|
78 |
+
hidden_size = model_params["hidden_size"]
|
79 |
+
num_attention_heads = model_params["num_attention_heads"]
|
80 |
+
vocab_size = model_params["vocab_size"]
|
81 |
+
sequence_length = model_params["sequence_length"]
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
dp_degree = num_gpus / (tensor_parallel_size * pipeline_parallel_size)
|
84 |
+
embed_params = 2 * vocab_size * hidden_size
|
85 |
+
positional_params = hidden_size * sequence_length
|
86 |
+
ln_params = 8 * hidden_size * num_layers + (2 * hidden_size)
|
87 |
+
attention_params = int(2 * (1 + ffn_expansion_factor) * num_layers * hidden_size * hidden_size)
|
88 |
+
mlp_params = ffn_expansion_factor * num_layers * hidden_size * hidden_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
total_params = embed_params + positional_params + ln_params + attention_params + mlp_params
|
90 |
|
91 |
+
bytes_per_param = 2 if is_mixed_precision else 4
|
92 |
model_mem = total_params * bytes_per_param
|
93 |
+
per_gpu_mem_gib = (model_mem / (tensor_parallel_size * pipeline_parallel_size)) / 1024**3 + misc_mem_gib
|
94 |
|
95 |
return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB"
|
96 |
|
97 |
+
# Combine param calculation and memory calculation in the result
|
98 |
+
def calculate_model(hf_model_name_or_path, tied_embeddings, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, num_mlp_linears, kv_size_ratio, moe, num_experts, expert_interval, topk, is_mixed_precision, misc_mem_gib):
|
99 |
+
param_result = calc_params(vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio)
|
100 |
+
mem_result = calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib)
|
101 |
+
return param_result + "\n" + mem_result
|
102 |
+
|
103 |
# ---- Gradio Interface ---- #
|
104 |
with gr.Blocks() as demo:
|
105 |
with gr.Tabs():
|
106 |
+
with gr.TabItem("Model Calculation"):
|
107 |
+
hf_model_name_or_path = gr.Textbox(label="HuggingFace Model Name or Path (optional)", value="")
|
108 |
vocab_size = gr.Number(label="Vocab Size", value=51200)
|
109 |
tied_embeddings = gr.Checkbox(label="Tied Embeddings", value=False)
|
110 |
hidden_size = gr.Number(label="Hidden Size", value=6144)
|
111 |
sequence_length = gr.Number(label="Sequence Length", value=2048)
|
112 |
num_layers = gr.Number(label="Number of Layers", value=44)
|
113 |
+
num_attention_heads = gr.Number(label="Number of Attention Heads", value=64)
|
114 |
ffn_expansion_factor = gr.Number(label="FFN Expansion Factor", value=4)
|
115 |
num_mlp_linears = gr.Number(label="Number of Linear Layers per MLP Block", value=2)
|
116 |
kv_size_ratio = gr.Number(label="KV Size Ratio", value=1.0)
|
|
|
121 |
expert_interval = gr.Number(label="Expert Interval", value=1)
|
122 |
topk = gr.Number(label="Top k Routing", value=1)
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
num_gpus = gr.Number(label="Number of GPUs", value=1)
|
125 |
tensor_parallel_size = gr.Number(label="Tensor Parallel Size", value=1)
|
126 |
pipeline_parallel_size = gr.Number(label="Pipeline Parallel Size", value=1)
|
127 |
batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=8)
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
is_mixed_precision = gr.Checkbox(label="Mixed Precision", value=True)
|
129 |
misc_mem_gib = gr.Number(label="Misc Memory Overhead (GiB)", value=5)
|
130 |
|
131 |
+
result = gr.Textbox(label="Output", interactive=False)
|
132 |
+
calculate_button = gr.Button("Calculate")
|
133 |
+
calculate_button.click(calculate_model,
|
134 |
+
inputs=[hf_model_name_or_path, tied_embeddings, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, num_mlp_linears, kv_size_ratio, moe, num_experts, expert_interval, topk, is_mixed_precision, misc_mem_gib],
|
135 |
+
outputs=result)
|
136 |
|
137 |
demo.launch()
|