import gradio as gr import math # Helper function to pretty-print message sizes def convert_params(params): if params == 0: return "0" size_name = ("", "K", "M", "B", "T", "P", "E", "Z", "Y") i = int(math.floor(math.log(params, 1000))) p = math.pow(1000, i) s = round(params / p, 2) return "%s %s" % (s, size_name[i]) # ---- Transformer Parameter Calculation ---- # def calc_params(vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio): if tied_embeddings: embedding_params = hidden_size * vocab_size else: embedding_params = 2 * hidden_size * vocab_size position_embedding_params = hidden_size * sequence_length attention_params = int(2 * (1 + kv_size_ratio) * num_layers * hidden_size * hidden_size) layernorm_params = 13 * num_layers * hidden_size if moe: num_expert_layers = num_layers / expert_interval ffn_expert_params = num_mlp_linears * ffn_expansion_factor * num_expert_layers * num_experts * hidden_size * hidden_size ffn_dense_params = num_mlp_linears * ffn_expansion_factor * (num_layers - num_expert_layers) * hidden_size * hidden_size ffn_params = ffn_expert_params + ffn_dense_params gating_params = num_expert_layers * hidden_size * num_experts else: ffn_params = num_mlp_linears * ffn_expansion_factor * num_layers * hidden_size * hidden_size total_params = embedding_params + attention_params + ffn_params + position_embedding_params + layernorm_params if moe: total_params += gating_params result = f""" Embedding parameters: {convert_params(embedding_params)} Attention parameters: {convert_params(attention_params)} FFN parameters: {convert_params(ffn_params)} {'Gating parameters: ' + convert_params(gating_params) if moe else ''} Total Params in the Model: {convert_params(total_params)} """ return result # ---- Memory Calculation Code (from the second script) ---- # def calc_mem(args): dp_degree = args.num_gpus / (args.tensor_parallel_size * args.pipeline_parallel_size) embed_params = 2 * args.vocab_size * args.hidden_size positional_params = args.hidden_size * args.sequence_length ln_params = 8 * args.hidden_size * args.num_layers + (2 * args.hidden_size) attention_params = int(2 * (1 + args.kv_size_ratio) * args.num_layers * args.hidden_size * args.hidden_size) mlp_params = args.num_mlp_linears * args.num_layers * args.hidden_size * args.ffn_expansion_factor * args.hidden_size total_params = embed_params + positional_params + ln_params + attention_params + mlp_params bytes_per_param = args.low_prec_bytes_per_val if args.is_mixed_precision else args.high_prec_bytes_per_val model_mem = total_params * bytes_per_param per_gpu_model_mem = model_mem / (args.tensor_parallel_size * args.pipeline_parallel_size) per_gpu_mem_gib = per_gpu_model_mem / 1024**3 + args.misc_mem_gib return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB" # Gradio Interface with gr.Blocks() as demo: with gr.Tabs(): with gr.TabItem("Parameter Calculation"): vocab_size = gr.Number(label="Vocab Size", value=51200) tied_embeddings = gr.Checkbox(label="Tied Embeddings", value=False) hidden_size = gr.Number(label="Hidden Size", value=6144) sequence_length = gr.Number(label="Sequence Length", value=2048) num_layers = gr.Number(label="Number of Layers", value=44) ffn_expansion_factor = gr.Number(label="FFN Expansion Factor", value=4) num_mlp_linears = gr.Number(label="Number of Linear Layers per MLP Block", value=2) kv_size_ratio = gr.Number(label="KV Size Ratio", value=1.0) with gr.Accordion("MoE Parameters", open=False): moe = gr.Checkbox(label="MoE", value=False) num_experts = gr.Number(label="Number of Experts", value=8) expert_interval = gr.Number(label="Expert Interval", value=1) topk = gr.Number(label="Top k Routing", value=1) result = gr.Textbox(label="Output", interactive=False) calculate_button = gr.Button("Calculate") calculate_button.click(calc_params, inputs=[vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio], outputs=result) with gr.TabItem("Memory Calculation"): hf_model_name_or_path = gr.Textbox(label="HuggingFace Model Name or Path", value="") num_gpus = gr.Number(label="Number of GPUs", value=1) tensor_parallel_size = gr.Number(label="Tensor Parallel Size", value=1) pipeline_parallel_size = gr.Number(label="Pipeline Parallel Size", value=1) batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=8) sequence_length = gr.Number(label="Sequence Length", value=2048) vocab_size = gr.Number(label="Vocab Size", value=51200) hidden_size = gr.Number(label="Hidden Size", value=6144) num_attention_heads = gr.Number(label="Number of Attention Heads", value=64) num_layers = gr.Number(label="Number of Layers", value=44) ffn_expansion_factor = gr.Number(label="FFN Expansion Factor", value=4) is_mixed_precision = gr.Checkbox(label="Mixed Precision", value=True) misc_mem_gib = gr.Number(label="Misc Memory Overhead (GiB)", value=5) memory_result = gr.Textbox(label="Memory Calculation Result", interactive=False) calc_memory_button = gr.Button("Calculate Memory") calc_memory_button.click(calc_mem, inputs=[num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib], outputs=memory_result) demo.launch()