# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目 """ 该文件中主要包含三个函数 不具备多线程能力的函数: 1. predict: 正常对话时使用,具备完备的交互功能,不可多线程 具备多线程调用能力的函数 2. predict_no_ui:高级实验性功能模块调用,不会实时显示在界面上,参数简单,可以多线程并行,方便实现复杂的功能逻辑 3. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程 """ import json import gradio as gr import logging import traceback import requests import importlib # config_private.py放自己的秘密如API和代理网址 # 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件 try: from config_private import proxies, API_URL, API_KEY, TIMEOUT_SECONDS, MAX_RETRY, LLM_MODEL except: from config import proxies, API_URL, API_KEY, TIMEOUT_SECONDS, MAX_RETRY, LLM_MODEL timeout_bot_msg = '[local] Request timeout, network error. please check proxy settings in config.py.' def get_full_error(chunk, stream_response): """ 获取完整的从Openai返回的报错 """ while True: try: chunk += next(stream_response) except: break return chunk def predict_no_ui(api, inputs, top_p, temperature, history=[], sys_prompt=""): """ 发送至chatGPT,等待回复,一次性完成,不显示中间过程。 predict函数的简化版。 用于payload比较大的情况,或者用于实现多线、带嵌套的复杂功能。 inputs 是本次问询的输入 top_p, temperature是chatGPT的内部调优参数 history 是之前的对话列表 (注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误,然后raise ConnectionAbortedError) """ headers, payload = generate_payload(api, inputs, top_p, temperature, history, system_prompt=sys_prompt, stream=False) retry = 0 while True: try: # make a POST request to the API endpoint, stream=False response = requests.post(API_URL, headers=headers, proxies=proxies, json=payload, stream=False, timeout=TIMEOUT_SECONDS*2); break except requests.exceptions.ReadTimeout as e: retry += 1 traceback.print_exc() if retry > MAX_RETRY: raise TimeoutError if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……') try: result = json.loads(response.text)["choices"][0]["message"]["content"] return result except Exception as e: if "choices" not in response.text: print(response.text) raise ConnectionAbortedError("Json解析不合常规,可能是文本过长" + response.text) def predict_no_ui_long_connection(api, inputs, top_p, temperature, history=[], sys_prompt=""): """ 发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免有人中途掐网线。 """ headers, payload = generate_payload(api, inputs, top_p, temperature, history, system_prompt=sys_prompt, stream=True) retry = 0 while True: try: # make a POST request to the API endpoint, stream=False response = requests.post(API_URL, headers=headers, proxies=proxies, json=payload, stream=True, timeout=TIMEOUT_SECONDS); break except requests.exceptions.ReadTimeout as e: retry += 1 traceback.print_exc() if retry > MAX_RETRY: raise TimeoutError if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……') stream_response = response.iter_lines() result = '' while True: try: chunk = next(stream_response).decode() except StopIteration: break if len(chunk)==0: continue if not chunk.startswith('data:'): chunk = get_full_error(chunk.encode('utf8'), stream_response) raise ConnectionAbortedError("OpenAI拒绝了请求:" + chunk.decode()) delta = json.loads(chunk.lstrip('data:'))['choices'][0]["delta"] if len(delta) == 0: break if "role" in delta: continue if "content" in delta: result += delta["content"]; print(delta["content"], end='') else: raise RuntimeError("意外Json结构:"+delta) return result def predict(api, inputs, top_p, temperature, chatbot=[], history=[], system_prompt='', stream = True, additional_fn=None): """ 发送至chatGPT,流式获取输出。 用于基础的对话功能。 inputs 是本次问询的输入 top_p, temperature是chatGPT的内部调优参数 history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误) chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容 additional_fn代表点击的哪个按钮,按钮见functional.py """ if additional_fn is not None: import functional importlib.reload(functional) functional = functional.get_functionals() inputs = functional[additional_fn]["Prefix"] + inputs + functional[additional_fn]["Suffix"] if stream: raw_input = inputs logging.info(f'[raw_input] {raw_input}') chatbot.append((inputs, "")) yield chatbot, history, "等待响应" headers, payload = generate_payload(api, inputs, top_p, temperature, history, system_prompt, stream) history.append(inputs); history.append(" ") retry = 0 while True: try: # make a POST request to the API endpoint, stream=True response = requests.post(API_URL, headers=headers, proxies=proxies, json=payload, stream=True, timeout=TIMEOUT_SECONDS);break except: retry += 1 chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg)) retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else "" yield chatbot, history, "请求超时"+retry_msg if retry > MAX_RETRY: raise TimeoutError gpt_replying_buffer = "" is_head_of_the_stream = True if stream: stream_response = response.iter_lines() while True: chunk = next(stream_response) # print(chunk.decode()[6:]) if is_head_of_the_stream: # 数据流的第一帧不携带content is_head_of_the_stream = False; continue if chunk: try: if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0: # 判定为数据流的结束,gpt_replying_buffer也写完了 logging.info(f'[response] {gpt_replying_buffer}') break # 处理数据流的主体 chunkjson = json.loads(chunk.decode()[6:]) status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}" # 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出 gpt_replying_buffer = gpt_replying_buffer + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"] history[-1] = gpt_replying_buffer chatbot[-1] = (history[-2], history[-1]) yield chatbot, history, status_text except Exception as e: traceback.print_exc() yield chatbot, history, "Json解析不合常规" chunk = get_full_error(chunk, stream_response) error_msg = chunk.decode() if "reduce the length" in error_msg: chatbot[-1] = (chatbot[-1][0], "[Local Message] Input (or history) is too long, please reduce input or clear history by refreshing this page.") history = [] elif "Incorrect API key" in error_msg: chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key provided.") else: from toolbox import regular_txt_to_markdown tb_str = regular_txt_to_markdown(traceback.format_exc()) chatbot[-1] = (chatbot[-1][0], f"[Local Message] Json Error \n\n {tb_str} \n\n {regular_txt_to_markdown(chunk.decode()[4:])}") yield chatbot, history, "Json解析不合常规" + error_msg return def generate_payload(api, inputs, top_p, temperature, history, system_prompt, stream): """ 整合所有信息,选择LLM模型,生成http请求,为发送请求做准备 """ headers = { "Content-Type": "application/json", "Authorization": f"Bearer {api}" } conversation_cnt = len(history) // 2 messages = [{"role": "system", "content": system_prompt}] if conversation_cnt: for index in range(0, 2*conversation_cnt, 2): what_i_have_asked = {} what_i_have_asked["role"] = "user" what_i_have_asked["content"] = history[index] what_gpt_answer = {} what_gpt_answer["role"] = "assistant" what_gpt_answer["content"] = history[index+1] if what_i_have_asked["content"] != "": if what_gpt_answer["content"] == "": continue if what_gpt_answer["content"] == timeout_bot_msg: continue messages.append(what_i_have_asked) messages.append(what_gpt_answer) else: messages[-1]['content'] = what_gpt_answer['content'] what_i_ask_now = {} what_i_ask_now["role"] = "user" what_i_ask_now["content"] = inputs messages.append(what_i_ask_now) payload = { "model": LLM_MODEL, "messages": messages, "temperature": temperature, # 1.0, "top_p": top_p, # 1.0, "n": 1, "stream": stream, "presence_penalty": 0, "frequency_penalty": 0, } print(f" {LLM_MODEL} : {conversation_cnt} : {inputs}") return headers,payload