File size: 30,432 Bytes
240e0a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
import collections      # 统计库
import re
from magic_pdf.libs.commons import fitz             # pyMuPDF库


#--------------------------------------- Tool Functions --------------------------------------#
# 正则化,输入文本,输出只保留a-z,A-Z,0-9
def remove_special_chars(s: str) -> str:
    pattern = r"[^a-zA-Z0-9]"
    res = re.sub(pattern, "", s)
    return res

def check_rect1_sameWith_rect2(L1: float, U1: float, R1: float, D1: float, L2: float, U2: float, R2: float, D2: float) -> bool:
    # 判断rect1和rect2是否一模一样
    return L1 == L2 and U1 == U2 and R1 == R2 and D1 == D2

def check_rect1_contains_rect2(L1: float, U1: float, R1: float, D1: float, L2: float, U2: float, R2: float, D2: float) -> bool:
    # 判断rect1包含了rect2
    return (L1 <= L2 <= R2 <= R1) and (U1 <= U2 <= D2 <= D1)

def check_rect1_overlaps_rect2(L1: float, U1: float, R1: float, D1: float, L2: float, U2: float, R2: float, D2: float) -> bool:
    # 判断rect1与rect2是否存在重叠(只有一条边重叠,也算重叠)
    return max(L1, L2) <= min(R1, R2) and max(U1, U2) <= min(D1, D2)

def calculate_overlapRatio_between_rect1_and_rect2(L1: float, U1: float, R1: float, D1: float, L2: float, U2: float, R2: float, D2: float) -> (float, float):
    # 计算两个rect,重叠面积各占2个rect面积的比例
    if min(R1, R2) < max(L1, L2) or min(D1, D2) < max(U1, U2):
        return 0, 0
    square_1 = (R1 - L1) * (D1 - U1)
    square_2 = (R2 - L2) * (D2 - U2)
    if square_1 == 0 or square_2 == 0:
        return 0, 0
    square_overlap = (min(R1, R2) - max(L1, L2)) * (min(D1, D2) - max(U1, U2))
    return square_overlap / square_1, square_overlap / square_2

def calculate_overlapRatio_between_line1_and_line2(L1: float, R1: float, L2: float, R2: float) -> (float, float):
    # 计算两个line,重叠区间各占2个line长度的比例
    if max(L1, L2) > min(R1, R2):
        return 0, 0
    if L1 == R1 or L2 == R2:
        return 0, 0
    overlap_line = min(R1, R2) - max(L1, L2)
    return overlap_line / (R1 - L1), overlap_line / (R2 - L2)


# 判断rect其实是一条line
def check_rect_isLine(L: float, U: float, R: float, D: float) -> bool:
    width = R - L
    height = D - U
    if width <= 3 or height <= 3:
        return True
    if width / height >= 30 or height / width >= 30:
        return True



def parse_images(page_ID: int, page: fitz.Page, json_from_DocXchain_obj: dict, junk_img_bojids=[]):
    """
    :param page_ID: int类型,当前page在当前pdf文档中是第page_D页。
    :param page :fitz读取的当前页的内容
    :param res_dir_path: str类型,是每一个pdf文档,在当前.py文件的目录下生成一个与pdf文档同名的文件夹,res_dir_path就是文件夹的dir
    :param json_from_DocXchain_obj: dict类型,把pdf文档送入DocXChain模型中后,提取bbox,结果保存到pdf文档同名文件夹下的 page_ID.json文件中了。json_from_DocXchain_obj就是打开后的dict
    """
    #### 通过fitz获取page信息
    ## 超越边界
    DPI = 72  # use this resolution
    pix = page.get_pixmap(dpi=DPI)
    pageL = 0
    pageR = int(pix.w)
    pageU = 0
    pageD = int(pix.h)
    
    #----------------- 保存每一个文本块的LURD ------------------#
    textLine_blocks = []
    blocks = page.get_text(
            "dict",
            flags=fitz.TEXTFLAGS_TEXT,
            #clip=clip,
        )["blocks"]
    for i in range(len(blocks)):
        bbox = blocks[i]['bbox']
        # print(bbox)
        for tt in blocks[i]['lines']:
            # 当前line
            cur_line_bbox = None                            # 当前line,最右侧的section的bbox
            for xf in tt['spans']:
                L, U, R, D = xf['bbox']
                L, R = min(L, R), max(L, R)
                U, D = min(U, D), max(U, D)
                textLine_blocks.append((L, U, R, D))
    textLine_blocks.sort(key = lambda LURD: (LURD[1], LURD[0]))
    

    #---------------------------------------------- 保存img --------------------------------------------------#
    raw_imgs = page.get_images()                    # 获取所有的图片
    imgs = []
    img_names = []                              # 保存图片的名字,方便在md中插入引用
    img_bboxs = []                              # 保存图片的location信息。
    img_visited = [] # 记忆化,记录该图片是否在md中已经插入过了
    img_ID = 0

    ## 获取、保存每张img的location信息(x1, y1, x2, y2, UL, DR坐标)
    for i in range(len(raw_imgs)):
        # 如果图片在junklist中则跳过
        if raw_imgs[i][0] in junk_img_bojids:
            continue
        else:
            try:
                tt = page.get_image_rects(raw_imgs[i][0], transform = True)

                rec = tt[0][0]
                L, U, R, D = int(rec[0]), int(rec[1]), int(rec[2]), int(rec[3])

                L, R = min(L, R), max(L, R)
                U, D = min(U, D), max(U, D)
                if not(pageL <= L < R <= pageR and pageU <= U < D <= pageD):
                    continue
                if pageL == L and R == pageR:
                    continue
                if pageU == U and D == pageD:
                    continue
                # pix1 = page.get_Pixmap(clip=(L,U,R,D))
                new_img_name = "{}_{}.png".format(page_ID, i)      # 图片name
                # pix1.save(res_dir_path + '/' + new_img_name)        # 把图片存出在新建的文件夹,并命名
                img_names.append(new_img_name)
                img_bboxs.append((L, U, R, D))
                img_visited.append(False)
                imgs.append(raw_imgs[i])
            except:
                continue
    
    #-------- 如果img之间有重叠。说明获取的img大小有问题,位置也不一定对。就扔掉--------#
    imgs_ok = [True for _ in range(len(imgs))]
    for i in range(len(imgs)):
        L1, U1, R1, D1 = img_bboxs[i]
        for j in range(i + 1, len(imgs)):
            L2, U2, R2, D2 = img_bboxs[j]
            ratio_1, ratio_2 = calculate_overlapRatio_between_rect1_and_rect2(L1, U1, R1, D1, L2, U2, R2, D2)
            s1 = abs(R1 - L1) * abs(D1 - U1)
            s2 = abs(R2 - L2) * abs(D2 - U2)
            if ratio_1 > 0 and ratio_2 > 0:
                if ratio_1 == 1 and ratio_2 > 0.8:
                    imgs_ok[i] = False
                elif ratio_1 > 0.8 and ratio_2 == 1:
                    imgs_ok[j] = False 
                elif s1 > 20000 and s2 > 20000 and ratio_1 > 0.4 and ratio_2 > 0.4:
                    imgs_ok[i] = False
                    imgs_ok[j] = False
                elif s1 / s2 > 5 and ratio_2 > 0.5:
                    imgs_ok[j] = False
                elif s2 / s1 > 5 and ratio_1 > 0.5:
                    imgs_ok[i] = False
                    
    imgs = [imgs[i] for i in range(len(imgs)) if imgs_ok[i] == True]
    img_names = [img_names[i] for i in range(len(imgs)) if imgs_ok[i] == True]
    img_bboxs = [img_bboxs[i] for i in range(len(imgs)) if imgs_ok[i] == True]
    img_visited = [img_visited[i] for i in range(len(imgs)) if imgs_ok[i] == True]
    #*******************************************************************************#
    
    #---------------------------------------- 通过fitz提取svg的信息 -----------------------------------------#
    #
    svgs = page.get_drawings()
    #------------ preprocess, check一些大框,看是否是合理的 ----------#
    ## 去重。有时候会遇到rect1和rect2是完全一样的情形。
    svg_rect_visited = set()
    available_svgIdx = []
    for i in range(len(svgs)):
        L, U, R, D = svgs[i]['rect'].irect
        L, R = min(L, R), max(L, R)
        U, D = min(U, D), max(U, D)
        tt = (L, U, R, D)
        if tt not in svg_rect_visited:
            svg_rect_visited.add(tt)
            available_svgIdx.append(i)
        
    svgs = [svgs[i] for i in available_svgIdx]                  # 去重后,有效的svgs
    svg_childs = [[] for _ in range(len(svgs))]
    svg_parents = [[] for _ in range(len(svgs))]
    svg_overlaps = [[] for _ in range(len(svgs))]            #svg_overlaps[i]是一个list,存的是与svg_i有重叠的svg的index。e.g., svg_overlaps[0] = [1, 2, 7, 9]
    svg_visited = [False for _ in range(len(svgs))]
    svg_exceedPage = [0 for _ in range(len(svgs))]       # 是否超越边界(artbox),很大,但一般是一个svg的底。  
        
    
    for i in range(len(svgs)):
        L, U, R, D = svgs[i]['rect'].irect
        ratio_1, ratio_2 = calculate_overlapRatio_between_rect1_and_rect2(L, U, R, D, pageL, pageU, pageR, pageD)
        if (pageL + 20 < L <= R < pageR - 20) and (pageU + 20 < U <= D < pageD - 20):
            if ratio_2 >= 0.7:
                svg_exceedPage[i] += 4
        else:
            if L <= pageL:
                svg_exceedPage[i] += 1
            if pageR <= R:
                svg_exceedPage[i] += 1
            if U <= pageU:
                svg_exceedPage[i] += 1
            if pageD <= D:
                svg_exceedPage[i] += 1
            
    #### 如果有≥2个的超边界的框,就不要手写规则判断svg了。很难写对。
    if len([x for x in svg_exceedPage if x >= 1]) >= 2:
        svgs = []
        svg_childs = []
        svg_parents = []
        svg_overlaps = []
        svg_visited = []
        svg_exceedPage = []  
            
    #---------------------------- build graph ----------------------------#
    for i, p in enumerate(svgs):
        L1, U1, R1, D1 = svgs[i]["rect"].irect
        for j in range(len(svgs)):
            if i == j:
                continue
            L2, U2, R2, D2 = svgs[j]["rect"].irect
            ## 包含
            if check_rect1_contains_rect2(L1, U1, R1, D1, L2, U2, R2, D2) == True:
                svg_childs[i].append(j)
                svg_parents[j].append(i)
            else:
                ## 交叉
                if check_rect1_overlaps_rect2(L1, U1, R1, D1, L2, U2, R2, D2) == True:
                    svg_overlaps[i].append(j)

    #---------------- 确定最终的svg。连通块儿的外围 -------------------#
    eps_ERROR = 5                      # 给识别出的svg,四周留白(为了防止pyMuPDF的rect不准)
    svg_ID = 0        
    svg_final_names = []
    svg_final_bboxs = []
    svg_final_visited = []              # 为下面,text识别左准备。作用同img_visited
    
    svg_idxs = [i for i in range(len(svgs))]
    svg_idxs.sort(key = lambda i: -(svgs[i]['rect'].irect[2] - svgs[i]['rect'].irect[0]) * (svgs[i]['rect'].irect[3] - svgs[i]['rect'].irect[1]))   # 按照面积,从大到小排序
     
    for i in svg_idxs:
        if svg_visited[i] == True:
            continue
        svg_visited[i] = True
        L, U, R, D = svgs[i]['rect'].irect
        width = R - L
        height = D - U
        if check_rect_isLine(L, U, R, D) == True:
            svg_visited[i] = False
            continue
        # if i == 4:
        #     print(i, L, U, R, D)
        #     print(svg_parents[i])
        
        cur_block_element_cnt = 0               # 当前要判定为svg的区域中,有多少elements,最外围的最大svg框除外。
        if len(svg_parents[i]) == 0:
            ## 是个普通框的情形
            cur_block_element_cnt += len(svg_childs[i])
            if svg_exceedPage[i] == 0:
                ## 误差。可能已经包含在某个框里面了
                neglect_flag = False
                for pL, pU, pR, pD in svg_final_bboxs:
                    if pL <= L <= R <= pR and pU <= U <= D <= pD:
                        neglect_flag = True
                        break
                if neglect_flag == True:
                    continue
                
                ## 搜索连通域, bfs+记忆化
                q = collections.deque()
                for j in svg_overlaps[i]:
                    q.append(j)
                while q:
                    j = q.popleft()
                    svg_visited[j] = True
                    L2, U2, R2, D2 = svgs[j]['rect'].irect
                    # width2 = R2 - L2
                    # height2 = D2 - U2
                    # if width2 <= 2 or height2 <= 2 or (height2 / width2) >= 30 or (width2 / height2) >= 30:
                    #     continue
                    L = min(L, L2)
                    R = max(R, R2)
                    U = min(U, U2)
                    D = max(D, D2)
                    cur_block_element_cnt += 1
                    cur_block_element_cnt += len(svg_childs[j])
                    for k in svg_overlaps[j]:
                        if svg_visited[k] == False and svg_exceedPage[k] == 0:
                            svg_visited[k] = True
                            q.append(k)
            elif svg_exceedPage[i] <= 2:
                ## 误差。可能已经包含在某个svg_final_bbox框里面了
                neglect_flag = False
                for sL, sU, sR, sD in svg_final_bboxs:
                    if sL <= L <= R <= sR and sU <= U <= D <= sD:
                        neglect_flag = True
                        break
                if neglect_flag == True:
                    continue
                
                L, U, R, D = pageR, pageD, pageL, pageU
                ## 所有孩子元素的最大边界
                for j in svg_childs[i]:
                    if svg_visited[j] == True:
                        continue
                    if svg_exceedPage[j] >= 1:
                        continue
                    svg_visited[j] = True                       #### 这个位置考虑一下
                    L2, U2, R2, D2 = svgs[j]['rect'].irect
                    L = min(L, L2)
                    R = max(R, R2)
                    U = min(U, U2)
                    D = max(D, D2)
                    cur_block_element_cnt += 1
                    
            # 如果是条line,就不用保存了
            if check_rect_isLine(L, U, R, D) == True:
                continue
            # 如果当前的svg,连2个elements都没有,就不用保存了
            if cur_block_element_cnt < 3:
                continue
            
            ## 当前svg,框住了多少文本框。如果框多了,可能就是错了
            contain_textLineBlock_cnt = 0
            for L2, U2, R2, D2 in textLine_blocks:
                if check_rect1_contains_rect2(L, U, R, D, L2, U2, R2, D2) == True:
                    contain_textLineBlock_cnt += 1
            if contain_textLineBlock_cnt >= 10:
                continue
            
            # L -= eps_ERROR * 2
            # U -= eps_ERROR
            # R += eps_ERROR * 2
            # D += eps_ERROR
            # # cur_svg = page.get_pixmap(matrix=fitz.Identity, dpi=None, colorspace=fitz.csRGB, clip=(U,L,R,D), alpha=False, annots=True)
            # cur_svg = page.get_pixmap(clip=(L,U,R,D))
            new_svg_name = "svg_{}_{}.png".format(page_ID, svg_ID)      # 图片name
            # cur_svg.save(res_dir_path + '/' + new_svg_name)        # 把图片存出在新建的文件夹,并命名
            svg_final_names.append(new_svg_name)                      # 把图片的名字存在list中,方便在md中插入引用
            svg_final_bboxs.append((L, U, R, D))
            svg_final_visited.append(False)
            svg_ID += 1
    
    ## 识别出的svg,可能有 包含,相邻的情形。需要进一步合并
    svg_idxs = [i for i in range(len(svg_final_bboxs))]
    svg_idxs.sort(key = lambda i: (svg_final_bboxs[i][1], svg_final_bboxs[i][0]))   # (U, L)
    svg_final_names_2 = []
    svg_final_bboxs_2 = []
    svg_final_visited_2 = []              # 为下面,text识别左准备。作用同img_visited
    svg_ID_2 = 0
    for i in range(len(svg_final_bboxs)):
        L1, U1, R1, D1 = svg_final_bboxs[i]
        for j in range(i + 1, len(svg_final_bboxs)):
            L2, U2, R2, D2 = svg_final_bboxs[j]
            # 如果 rect1包含了rect2
            if check_rect1_contains_rect2(L1, U1, R1, D1, L2, U2, R2, D2) == True:
                svg_final_visited[j] = True
                continue
            # 水平并列
            ratio_1, ratio_2 = calculate_overlapRatio_between_line1_and_line2(U1, D1, U2, D2)
            if ratio_1 >= 0.7 and ratio_2 >= 0.7:
                if abs(L2 - R1) >= 20:
                    continue
                LL = min(L1, L2)
                UU = min(U1, U2)
                RR = max(R1, R2)
                DD = max(D1, D2)
                svg_final_bboxs[i] = (LL, UU, RR, DD)
                svg_final_visited[j] = True
                continue
            # 竖直并列
            ratio_1, ratio_2 = calculate_overlapRatio_between_line1_and_line2(L1, R2, L2, R2)
            if ratio_1 >= 0.7 and ratio_2 >= 0.7:
                if abs(U2 - D1) >= 20:
                    continue
                LL = min(L1, L2)
                UU = min(U1, U2)
                RR = max(R1, R2)
                DD = max(D1, D2)
                svg_final_bboxs[i] = (LL, UU, RR, DD)
                svg_final_visited[j] = True
    
    for i in range(len(svg_final_bboxs)):
        if svg_final_visited[i] == False:
            L, U, R, D = svg_final_bboxs[i]
            svg_final_bboxs_2.append((L, U, R, D))
            
            L -= eps_ERROR * 2
            U -= eps_ERROR
            R += eps_ERROR * 2
            D += eps_ERROR
            # cur_svg = page.get_pixmap(clip=(L,U,R,D))
            new_svg_name = "svg_{}_{}.png".format(page_ID, svg_ID_2)      # 图片name
            # cur_svg.save(res_dir_path + '/' + new_svg_name)        # 把图片存出在新建的文件夹,并命名
            svg_final_names_2.append(new_svg_name)                      # 把图片的名字存在list中,方便在md中插入引用
            svg_final_bboxs_2.append((L, U, R, D))
            svg_final_visited_2.append(False)
            svg_ID_2 += 1
       
    ## svg收尾。识别为drawing,但是在上面没有拼成一张图的。
    # 有收尾才comprehensive
    # xxxx
    # xxxx
    # xxxx
    # xxxx
    
    
    #--------- 通过json_from_DocXchain来获取,figure, table, equation的bbox ---------#
    figure_bbox_from_DocXChain = []
    
    figure_from_DocXChain_visited = []          # 记忆化
    figure_bbox_from_DocXChain_overlappedRatio = []
    
    figure_only_from_DocXChain_bboxs = []     # 存储
    figure_only_from_DocXChain_names = []
    figure_only_from_DocXChain_visited = []
    figure_only_ID = 0
    
    xf_json = json_from_DocXchain_obj
    width_from_json = xf_json['page_info']['width']
    height_from_json = xf_json['page_info']['height']
    LR_scaleRatio = width_from_json / (pageR - pageL)
    UD_scaleRatio = height_from_json / (pageD - pageU)
    
    for xf in xf_json['layout_dets']:
    # {0: 'title', 1: 'figure', 2: 'plain text', 3: 'header', 4: 'page number', 5: 'footnote', 6: 'footer', 7: 'table', 8: 'table caption', 9: 'figure caption', 10: 'equation', 11: 'full column', 12: 'sub column'}
        L = xf['poly'][0] / LR_scaleRatio
        U = xf['poly'][1] / UD_scaleRatio
        R = xf['poly'][2] / LR_scaleRatio
        D = xf['poly'][5] / UD_scaleRatio
        # L += pageL          # 有的页面,artBox偏移了。不在(0,0)
        # R += pageL
        # U += pageU
        # D += pageU
        L, R = min(L, R), max(L, R)
        U, D = min(U, D), max(U, D)
        # figure
        if xf["category_id"] == 1 and xf['score'] >= 0.3:
            figure_bbox_from_DocXChain.append((L, U, R, D))
            figure_from_DocXChain_visited.append(False)
            figure_bbox_from_DocXChain_overlappedRatio.append(0.0)

    #---------------------- 比对上面识别出来的img,svg 与DocXChain给的figure -----------------------#
    
    ## 比对imgs
    for i, b1 in enumerate(figure_bbox_from_DocXChain):
        # print('--------- DocXChain的图片', b1)
        L1, U1, R1, D1 = b1
        for b2 in img_bboxs:
            # print('-------- igms得到的图', b2)
            L2, U2, R2, D2 = b2
            s1 = abs(R1 - L1) * abs(D1 - U1)
            s2 = abs(R2 - L2) * abs(D2 - U2)
            # 相同
            if check_rect1_sameWith_rect2(L1, U1, R1, D1, L2, U2, R2, D2) == True:
                figure_from_DocXChain_visited[i] = True
            # 包含
            elif check_rect1_contains_rect2(L1, U1, R1, D1, L2, U2, R2, D2) == True:
                if s2 / s1 > 0.8:
                    figure_from_DocXChain_visited[i] = True
            elif check_rect1_contains_rect2(L2, U2, R2, D2, L1, U1, R1, D1) == True:
                if s1 / s2 > 0.8:
                    figure_from_DocXChain_visited[i] = True 
            else:
                # 重叠了相当一部分
                # print('进入第3部分')
                ratio_1, ratio_2 = calculate_overlapRatio_between_rect1_and_rect2(L1, U1, R1, D1, L2, U2, R2, D2)
                if (ratio_1 >= 0.6 and ratio_2 >= 0.6) or (ratio_1 >= 0.8 and s1/s2>0.8) or (ratio_2 >= 0.8 and s2/s1>0.8):
                    figure_from_DocXChain_visited[i] = True
                else:
                    figure_bbox_from_DocXChain_overlappedRatio[i] += ratio_1
                    # print('图片的重叠率是{}'.format(ratio_1))


    ## 比对svgs
    svg_final_bboxs_2_badIdxs = []
    for i, b1 in enumerate(figure_bbox_from_DocXChain):
        L1, U1, R1, D1 = b1
        for j, b2 in enumerate(svg_final_bboxs_2):
            L2, U2, R2, D2 = b2
            s1 = abs(R1 - L1) * abs(D1 - U1)
            s2 = abs(R2 - L2) * abs(D2 - U2)
            # 相同
            if check_rect1_sameWith_rect2(L1, U1, R1, D1, L2, U2, R2, D2) == True:
                figure_from_DocXChain_visited[i] = True
            # 包含
            elif check_rect1_contains_rect2(L1, U1, R1, D1, L2, U2, R2, D2) == True:
                figure_from_DocXChain_visited[i] = True
            elif check_rect1_contains_rect2(L2, U2, R2, D2, L1, U1, R1, D1) == True:
                if s1 / s2 > 0.7:
                    figure_from_DocXChain_visited[i] = True
                else:
                    svg_final_bboxs_2_badIdxs.append(j)     # svg丢弃。用DocXChain的结果。
            else:
                # 重叠了相当一部分
                ratio_1, ratio_2 = calculate_overlapRatio_between_rect1_and_rect2(L1, U1, R1, D1, L2, U2, R2, D2)
                if (ratio_1 >= 0.5 and ratio_2 >= 0.5) or (min(ratio_1, ratio_2) >= 0.4 and max(ratio_1, ratio_2) >= 0.6):
                    figure_from_DocXChain_visited[i] = True
                else:
                    figure_bbox_from_DocXChain_overlappedRatio[i] += ratio_1
                    
    # 丢掉错误的svg
    svg_final_bboxs_2 = [svg_final_bboxs_2[i] for i in range(len(svg_final_bboxs_2)) if i not in set(svg_final_bboxs_2_badIdxs)]
    
    for i in range(len(figure_from_DocXChain_visited)):
        if figure_bbox_from_DocXChain_overlappedRatio[i] >= 0.7:
            figure_from_DocXChain_visited[i] = True
    
    # DocXChain识别出来的figure,但是没被保存的。
    for i in range(len(figure_from_DocXChain_visited)):
        if figure_from_DocXChain_visited[i] == False:
            figure_from_DocXChain_visited[i] = True
            cur_bbox = figure_bbox_from_DocXChain[i]
            # cur_figure = page.get_pixmap(clip=cur_bbox)
            new_figure_name = "figure_only_{}_{}.png".format(page_ID, figure_only_ID)      # 图片name
            # cur_figure.save(res_dir_path + '/' + new_figure_name)        # 把图片存出在新建的文件夹,并命名
            figure_only_from_DocXChain_names.append(new_figure_name)                      # 把图片的名字存在list中,方便在md中插入引用
            figure_only_from_DocXChain_bboxs.append(cur_bbox)
            figure_only_from_DocXChain_visited.append(False)
            figure_only_ID += 1
    
    img_bboxs.sort(key = lambda LURD: (LURD[1], LURD[0]))
    svg_final_bboxs_2.sort(key = lambda LURD: (LURD[1], LURD[0]))
    figure_only_from_DocXChain_bboxs.sort(key = lambda LURD: (LURD[1], LURD[0]))
    curPage_all_fig_bboxs = img_bboxs + svg_final_bboxs + figure_only_from_DocXChain_bboxs
    
    #--------------------------- 最后统一去重 -----------------------------------#
    curPage_all_fig_bboxs.sort(key = lambda LURD: ( (LURD[2]-LURD[0])*(LURD[3]-LURD[1]) , LURD[0], LURD[1]) )
    
    #### 先考虑包含关系的小块
    final_duplicate = set()
    for i in range(len(curPage_all_fig_bboxs)):
        L1, U1, R1, D1 = curPage_all_fig_bboxs[i]
        for j in range(len(curPage_all_fig_bboxs)):
            if i == j:
                continue
            L2, U2, R2, D2 = curPage_all_fig_bboxs[j]
            s1 = abs(R1 - L1) * abs(D1 - U1)
            s2 = abs(R2 - L2) * abs(D2 - U2)
            if check_rect1_contains_rect2(L2, U2, R2, D2, L1, U1, R1, D1) == True:
                final_duplicate.add((L1, U1, R1, D1))
            else:
                ratio_1, ratio_2 = calculate_overlapRatio_between_rect1_and_rect2(L1, U1, R1, D1, L2, U2, R2, D2)
                if ratio_1 >= 0.8 and ratio_2 <= 0.6:
                    final_duplicate.add((L1, U1, R1, D1))

    curPage_all_fig_bboxs = [LURD for LURD in curPage_all_fig_bboxs if LURD not in final_duplicate]
    
    #### 再考虑重叠关系的块
    final_duplicate = set()
    final_synthetic_bboxs = []
    for i in range(len(curPage_all_fig_bboxs)):
        L1, U1, R1, D1 = curPage_all_fig_bboxs[i]
        for j in range(len(curPage_all_fig_bboxs)):
            if i == j:
                continue
            L2, U2, R2, D2 = curPage_all_fig_bboxs[j]
            s1 = abs(R1 - L1) * abs(D1 - U1)
            s2 = abs(R2 - L2) * abs(D2 - U2)
            ratio_1, ratio_2 = calculate_overlapRatio_between_rect1_and_rect2(L1, U1, R1, D1, L2, U2, R2, D2)
            union_ok = False
            if (ratio_1 >= 0.8 and ratio_2 <= 0.6) or (ratio_1 > 0.6 and ratio_2 > 0.6): 
                union_ok = True
            if (ratio_1 > 0.2 and s2 / s1 > 5):
                union_ok = True
            if (L1 <= (L2+R2)/2 <= R1) and (U1 <= (U2+D2)/2 <= D1):
                union_ok = True
            if (L2 <= (L1+R1)/2 <= R2) and (U2 <= (U1+D1)/2 <= D2):
                union_ok = True
            if union_ok == True:
                final_duplicate.add((L1, U1, R1, D1))
                final_duplicate.add((L2, U2, R2, D2))
                L3, U3, R3, D3 = min(L1, L2), min(U1, U2), max(R1, R2), max(D1, D2)
                final_synthetic_bboxs.append((L3, U3, R3, D3))

    # print('---------- curPage_all_fig_bboxs ---------')
    # print(curPage_all_fig_bboxs)
    curPage_all_fig_bboxs = [b for b in curPage_all_fig_bboxs if b not in final_duplicate]    
    final_synthetic_bboxs = list(set(final_synthetic_bboxs))


    ## 再再考虑重叠关系。极端情况下会迭代式地2进1
    new_images = []
    droped_img_idx = []
    image_bboxes = [[b[0], b[1], b[2], b[3]] for b in final_synthetic_bboxs]        
    for i in range(0, len(image_bboxes)):
        for j in range(i+1, len(image_bboxes)):
            if j not in droped_img_idx:
                L2, U2, R2, D2 = image_bboxes[j]
                s1 = abs(R1 - L1) * abs(D1 - U1)
                s2 = abs(R2 - L2) * abs(D2 - U2)
                ratio_1, ratio_2 = calculate_overlapRatio_between_rect1_and_rect2(L1, U1, R1, D1, L2, U2, R2, D2)
                union_ok = False
                if (ratio_1 >= 0.8 and ratio_2 <= 0.6) or (ratio_1 > 0.6 and ratio_2 > 0.6): 
                    union_ok = True
                if (ratio_1 > 0.2 and s2 / s1 > 5):
                    union_ok = True
                if (L1 <= (L2+R2)/2 <= R1) and (U1 <= (U2+D2)/2 <= D1):
                    union_ok = True
                if (L2 <= (L1+R1)/2 <= R2) and (U2 <= (U1+D1)/2 <= D2):
                    union_ok = True
                if union_ok == True:
                    # 合并
                    image_bboxes[i][0], image_bboxes[i][1],image_bboxes[i][2],image_bboxes[i][3] = min(image_bboxes[i][0], image_bboxes[j][0]), min(image_bboxes[i][1], image_bboxes[j][1]), max(image_bboxes[i][2], image_bboxes[j][2]), max(image_bboxes[i][3], image_bboxes[j][3])
                    droped_img_idx.append(j)
            
    for i in range(0, len(image_bboxes)):
        if i not in droped_img_idx:
            new_images.append(image_bboxes[i])
    
    
    # find_union_FLAG = True
    # while find_union_FLAG == True:
    #     find_union_FLAG = False
    #     final_duplicate = set()
    #     tmp = []
    #     for i in range(len(final_synthetic_bboxs)):
    #         L1, U1, R1, D1 = final_synthetic_bboxs[i]
    #         for j in range(len(final_synthetic_bboxs)):
    #             if i == j:
    #                 continue
    #             L2, U2, R2, D2 = final_synthetic_bboxs[j]
    #             s1 = abs(R1 - L1) * abs(D1 - U1)
    #             s2 = abs(R2 - L2) * abs(D2 - U2)
    #             ratio_1, ratio_2 = calculate_overlapRatio_between_rect1_and_rect2(L1, U1, R1, D1, L2, U2, R2, D2)
    #             union_ok = False
    #             if (ratio_1 >= 0.8 and ratio_2 <= 0.6) or (ratio_1 > 0.6 and ratio_2 > 0.6): 
    #                 union_ok = True
    #             if (ratio_1 > 0.2 and s2 / s1 > 5):
    #                 union_ok = True
    #             if (L1 <= (L2+R2)/2 <= R1) and (U1 <= (U2+D2)/2 <= D1):
    #                 union_ok = True
    #             if (L2 <= (L1+R1)/2 <= R2) and (U2 <= (U1+D1)/2 <= D2):
    #                 union_ok = True
    #             if union_ok == True:
    #                 find_union_FLAG = True
    #                 final_duplicate.add((L1, U1, R1, D1))
    #                 final_duplicate.add((L2, U2, R2, D2))
    #                 L3, U3, R3, D3 = min(L1, L2), min(U1, U2), max(R1, R2), max(D1, D2)
    #                 tmp.append((L3, U3, R3, D3)) 
    #     if find_union_FLAG == True:
    #         tmp = list(set(tmp))
    #         final_synthetic_bboxs = tmp[:]
    

    # curPage_all_fig_bboxs += final_synthetic_bboxs
    # print('--------- final synthetic')
    # print(final_synthetic_bboxs)
    #**************************************************************************#
    images1 = [[img[0], img[1], img[2], img[3]] for img in curPage_all_fig_bboxs]
    images = images1 + new_images
    return images