MinerU / magic_pdf /pre_proc /fix_image.py
derful's picture
Upload folder using huggingface_hub
240e0a0 verified
import re
from magic_pdf.libs.boxbase import _is_in_or_part_overlap, _is_part_overlap, find_bottom_nearest_text_bbox, find_left_nearest_text_bbox, find_right_nearest_text_bbox, find_top_nearest_text_bbox
from magic_pdf.libs.textbase import get_text_block_base_info
def fix_image_vertical(image_bboxes:list, text_blocks:list):
"""
修正图片的位置
如果图片与文字block发生一定重叠(也就是图片切到了一部分文字),那么减少图片边缘,让文字和图片不再重叠。
只对垂直方向进行。
"""
for image_bbox in image_bboxes:
for text_block in text_blocks:
text_bbox = text_block["bbox"]
if _is_part_overlap(text_bbox, image_bbox) and any([text_bbox[0]>=image_bbox[0] and text_bbox[2]<=image_bbox[2], text_bbox[0]<=image_bbox[0] and text_bbox[2]>=image_bbox[2]]):
if text_bbox[1] < image_bbox[1]:#在图片上方
image_bbox[1] = text_bbox[3]+1
elif text_bbox[3]>image_bbox[3]:#在图片下方
image_bbox[3] = text_bbox[1]-1
return image_bboxes
def __merge_if_common_edge(bbox1, bbox2):
x_min_1, y_min_1, x_max_1, y_max_1 = bbox1
x_min_2, y_min_2, x_max_2, y_max_2 = bbox2
# 检查是否有公共的水平边
if y_min_1 == y_min_2 or y_max_1 == y_max_2:
# 确保一个框的x范围在另一个框的x范围内
if max(x_min_1, x_min_2) <= min(x_max_1, x_max_2):
return [min(x_min_1, x_min_2), min(y_min_1, y_min_2), max(x_max_1, x_max_2), max(y_max_1, y_max_2)]
# 检查是否有公共的垂直边
if x_min_1 == x_min_2 or x_max_1 == x_max_2:
# 确保一个框的y范围在另一个框的y范围内
if max(y_min_1, y_min_2) <= min(y_max_1, y_max_2):
return [min(x_min_1, x_min_2), min(y_min_1, y_min_2), max(x_max_1, x_max_2), max(y_max_1, y_max_2)]
# 如果没有公共边
return None
def fix_seperated_image(image_bboxes:list):
"""
如果2个图片有一个边重叠,那么合并2个图片
"""
new_images = []
droped_img_idx = []
for i in range(0, len(image_bboxes)):
for j in range(i+1, len(image_bboxes)):
new_img = __merge_if_common_edge(image_bboxes[i], image_bboxes[j])
if new_img is not None:
new_images.append(new_img)
droped_img_idx.append(i)
droped_img_idx.append(j)
break
for i in range(0, len(image_bboxes)):
if i not in droped_img_idx:
new_images.append(image_bboxes[i])
return new_images
def __check_img_title_pattern(text):
"""
检查文本段是否是表格的标题
"""
patterns = [r"^(fig|figure).*", r"^(scheme).*"]
text = text.strip()
for pattern in patterns:
match = re.match(pattern, text, re.IGNORECASE)
if match:
return True
return False
def __get_fig_caption_text(text_block):
txt = " ".join(span['text'] for line in text_block['lines'] for span in line['spans'])
line_cnt = len(text_block['lines'])
txt = txt.replace("Ž . ", '')
return txt, line_cnt
def __find_and_extend_bottom_caption(text_block, pymu_blocks, image_box):
"""
继续向下方寻找和图片caption字号,字体,颜色一样的文字框,合并入caption。
text_block是已经找到的图片catpion(这个caption可能不全,多行被划分到多个pymu block里了)
"""
combined_image_caption_text_block = list(text_block.copy()['bbox'])
base_font_color, base_font_size, base_font_type = get_text_block_base_info(text_block)
while True:
tb_add = find_bottom_nearest_text_bbox(pymu_blocks, combined_image_caption_text_block)
if not tb_add:
break
tb_font_color, tb_font_size, tb_font_type = get_text_block_base_info(tb_add)
if tb_font_color==base_font_color and tb_font_size==base_font_size and tb_font_type==base_font_type:
combined_image_caption_text_block[0] = min(combined_image_caption_text_block[0], tb_add['bbox'][0])
combined_image_caption_text_block[2] = max(combined_image_caption_text_block[2], tb_add['bbox'][2])
combined_image_caption_text_block[3] = tb_add['bbox'][3]
else:
break
image_box[0] = min(image_box[0], combined_image_caption_text_block[0])
image_box[1] = min(image_box[1], combined_image_caption_text_block[1])
image_box[2] = max(image_box[2], combined_image_caption_text_block[2])
image_box[3] = max(image_box[3], combined_image_caption_text_block[3])
text_block['_image_caption'] = True
def include_img_title(pymu_blocks, image_bboxes: list):
"""
向上方和下方寻找符合图片title的文本block,合并到图片里
如果图片上下都有fig的情况怎么办?寻找标题距离最近的那个。
---
增加对左侧和右侧图片标题的寻找
"""
for tb in image_bboxes:
# 优先找下方的
max_find_cnt = 3 # 向上,向下最多找3个就停止
temp_box = tb.copy()
while max_find_cnt>0:
text_block_btn = find_bottom_nearest_text_bbox(pymu_blocks, temp_box)
if text_block_btn:
txt, line_cnt = __get_fig_caption_text(text_block_btn)
if len(txt.strip())>0:
if not __check_img_title_pattern(txt) and max_find_cnt>0 and line_cnt<3: # 设置line_cnt<=2目的是为了跳过子标题,或者有时候图片下方文字没有被图片识别模型放入图片里
max_find_cnt = max_find_cnt - 1
temp_box[3] = text_block_btn['bbox'][3]
continue
else:
break
else:
temp_box[3] = text_block_btn['bbox'][3] # 宽度不变,扩大
max_find_cnt = max_find_cnt - 1
else:
break
max_find_cnt = 3 # 向上,向下最多找3个就停止
temp_box = tb.copy()
while max_find_cnt>0:
text_block_top = find_top_nearest_text_bbox(pymu_blocks, temp_box)
if text_block_top:
txt, line_cnt = __get_fig_caption_text(text_block_top)
if len(txt.strip())>0:
if not __check_img_title_pattern(txt) and max_find_cnt>0 and line_cnt <3:
max_find_cnt = max_find_cnt - 1
temp_box[1] = text_block_top['bbox'][1]
continue
else:
break
else:
b = text_block_top['bbox']
temp_box[1] = b[1] # 宽度不变,扩大
max_find_cnt = max_find_cnt - 1
else:
break
if text_block_btn and text_block_top and text_block_btn.get("_image_caption", False) is False and text_block_top.get("_image_caption", False) is False :
btn_text, _ = __get_fig_caption_text(text_block_btn)
top_text, _ = __get_fig_caption_text(text_block_top)
if __check_img_title_pattern(btn_text) and __check_img_title_pattern(top_text):
# 取距离图片最近的
btn_text_distance = text_block_btn['bbox'][1] - tb[3]
top_text_distance = tb[1] - text_block_top['bbox'][3]
if btn_text_distance<top_text_distance: # caption在下方
__find_and_extend_bottom_caption(text_block_btn, pymu_blocks, tb)
else:
text_block = text_block_top
tb[0] = min(tb[0], text_block['bbox'][0])
tb[1] = min(tb[1], text_block['bbox'][1])
tb[2] = max(tb[2], text_block['bbox'][2])
tb[3] = max(tb[3], text_block['bbox'][3])
text_block_btn['_image_caption'] = True
continue
text_block = text_block_btn # find_bottom_nearest_text_bbox(pymu_blocks, tb)
if text_block and text_block.get("_image_caption", False) is False:
first_text_line, _ = __get_fig_caption_text(text_block)
if __check_img_title_pattern(first_text_line):
# 发现特征之后,继续向相同方向寻找(想同颜色,想同大小,想同字体)的textblock
__find_and_extend_bottom_caption(text_block, pymu_blocks, tb)
continue
text_block = text_block_top # find_top_nearest_text_bbox(pymu_blocks, tb)
if text_block and text_block.get("_image_caption", False) is False:
first_text_line, _ = __get_fig_caption_text(text_block)
if __check_img_title_pattern(first_text_line):
tb[0] = min(tb[0], text_block['bbox'][0])
tb[1] = min(tb[1], text_block['bbox'][1])
tb[2] = max(tb[2], text_block['bbox'][2])
tb[3] = max(tb[3], text_block['bbox'][3])
text_block['_image_caption'] = True
continue
"""向左、向右寻找,暂时只寻找一次"""
left_text_block = find_left_nearest_text_bbox(pymu_blocks, tb)
if left_text_block and left_text_block.get("_image_caption", False) is False:
first_text_line, _ = __get_fig_caption_text(left_text_block)
if __check_img_title_pattern(first_text_line):
tb[0] = min(tb[0], left_text_block['bbox'][0])
tb[1] = min(tb[1], left_text_block['bbox'][1])
tb[2] = max(tb[2], left_text_block['bbox'][2])
tb[3] = max(tb[3], left_text_block['bbox'][3])
left_text_block['_image_caption'] = True
continue
right_text_block = find_right_nearest_text_bbox(pymu_blocks, tb)
if right_text_block and right_text_block.get("_image_caption", False) is False:
first_text_line, _ = __get_fig_caption_text(right_text_block)
if __check_img_title_pattern(first_text_line):
tb[0] = min(tb[0], right_text_block['bbox'][0])
tb[1] = min(tb[1], right_text_block['bbox'][1])
tb[2] = max(tb[2], right_text_block['bbox'][2])
tb[3] = max(tb[3], right_text_block['bbox'][3])
right_text_block['_image_caption'] = True
continue
return image_bboxes
def combine_images(image_bboxes:list):
"""
合并图片,如果图片有重叠,那么合并
"""
new_images = []
droped_img_idx = []
for i in range(0, len(image_bboxes)):
for j in range(i+1, len(image_bboxes)):
if j not in droped_img_idx and _is_in_or_part_overlap(image_bboxes[i], image_bboxes[j]):
# 合并
image_bboxes[i][0], image_bboxes[i][1],image_bboxes[i][2],image_bboxes[i][3] = min(image_bboxes[i][0], image_bboxes[j][0]), min(image_bboxes[i][1], image_bboxes[j][1]), max(image_bboxes[i][2], image_bboxes[j][2]), max(image_bboxes[i][3], image_bboxes[j][3])
droped_img_idx.append(j)
for i in range(0, len(image_bboxes)):
if i not in droped_img_idx:
new_images.append(image_bboxes[i])
return new_images