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Abstract—Stereo matching algorithms are nearly always de-
signed to find matches between a single pair of images. A method
is presented that was specifically designed to operate on sequences
of images. This method considers the cost of matching image
points in both the spatial and temporal domain. To maintain
real-time operation, a temporal cost aggregation method is used
to evaluate the likelihood of matches that is invariant with respect
to the number of prior images being considered. This method
has been implemented on massively parallel GPU hardware,
and the implementation ranks as one of the fastest and most
accurate real-time stereo matching methods as measured by the
Middlebury stereo performance benchmark.

I. INTRODUCTION

Modern stereo matching algorithms achieve excellent results
on static stereo images, as demonstrated by the Middlebury
stereo performance benchmark [1], [2]. However, their ap-
plication to stereo video sequences does not guarantee inter-
frame consistency of matches extracted from subsequent stereo
frame pairs. The lack of temporal consistency of matches
between successive frames introduces spurious artifacts in the
resulting disparity maps. The problem of obtaining temporally
consistent sequences of disparity maps from video streams is
known as the temporal stereo correspondence problem, yet
the amount of research efforts oriented towards finding an
effective solution to this problem is surprisingly small.

A method is proposed for real-time temporal stereo match-
ing that efficiently propagates matching cost information be-
tween consecutive frames of a stereo video sequence. This
method is invariant to the number of prior frames being
considered, and can be easily incorporated into any local stereo
method based on edge-aware filters. The iterative adaptive
support matching algorithm presented in [3] serves as a
foundation for the proposed method.

II. BACKGROUND

Stereo matching is the process of identifying correspon-
dences between pixels in stereo images obtained using a
pair of synchronized cameras. These correspondences are
conveniently represented using the notion of disparity, i.e. the
positional offset between two matching pixels. It is assumed
that the stereo images are rectified, such that matching pixels
are confined within corresponding rows of the images and
thus disparities are restricted to the horizontal dimension, as
illustrated in Figure 1. For visualization purposes, disparities
recovered for every pixel of a reference image are stored
together in the form of an image, which is known as the

disparity map. Note that individual disparities can be converted
to actual depths if the geometry of the camera setup is
known, i.e., the stereo configuration of cameras has been pre-
calibrated. 1

p = (x, y) p̄ = (x̄, y)

dp = x̄� x

Left camera Right camera

Figure 1: Geometry of two horizontally aligned views where p
denotes a pixel in the reference frame, p̄ denotes its matching
pixel in the target frame, and dp denotes the disparity between
them along the horizontal dimension.

In their excellent taxonomy paper [1], Scharstein and
Szeliski classify stereo algorithms as local or global meth-
ods. Global methods, which offer outstanding accuracy, are
typically derived from an energy minimization framework
that allows for explicit integration of disparity smoothness
constraints and thus is capable of regularizing the solution
in weakly textured areas. The minimization, however, is often
achieved using iterative methods or graph cuts, which do not
lend themselves well to parallel implementation.

In contrast, local methods, which are typically built upon
the Winner-Takes-All (WTA) framework, have the property of
computational regularity and are thus suitable for implemen-
tation on parallel graphics hardware. Within the WTA frame-
work, local stereo algorithms consider a range of disparity
hypotheses and compute a volume of pixel-wise dissimilarity
metrics between the reference image and the matched image at
every considered disparity value. Final disparities are chosen
from the cost volume by traversing through its values and
selecting the disparities associated with minimum matching
costs for every pixel of the reference image.

Disparity maps obtained using this simple strategy are often
too noisy to be considered useable. To reduce the effects
of noise and enforce spatial consistency of matches, local
stereo algorithms consider arbitrarily shaped and sized support
windows centered at each pixel of the reference image, and
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aggregate cost values within the pixel neighborhoods defined
by these windows. In 2005, Yoon and Kweon [4] proposed
an adaptive matching cost aggregation scheme, which assigns
a weight value to every pixel located in the support window
of a given pixel of interest. The weight value is based on
the spatial and color similarity between the pixel of interest
and a pixel in its support window, and the aggregated cost is
computed as a weighted average of the pixel-wise costs within
the considered support window. The edge-preserving nature
and matching accuracy of adaptive support weights have made
them one of the most popular choices for cost aggregation in
recently proposed stereo matching algorithms [3], [5]–[8].

Recently, Rheman et al. [9], [10] have revisited the cost
aggregation step of stereo algorithms, and demonstrated that
cost aggregation can be performed by filtering of subsequent
layers of the initially computed matching cost volume. In par-
ticular, the edge-aware image filters, such as the bilateral filter
of Tomasi and Manducci [11] or the guided filter of He [12],
have been rendered useful for the problem of matching cost
aggregation, enabling stereo algorithms to correctly recover
disparities along object boundaries. In fact, Yoon and Kweon’s
adaptive support-weight cost aggregation scheme is equivalent
to the application of the so-called joint bilateral filter to the
layers of the matching cost volume.

It has been demonstrated that the performance of stereo
algorithms designed to match a single pair of images can
be adapted to take advantage of the temporal dependencies
available in stereo video sequences. Early proposed solutions
to temporal stereo matching attempted to average matching
costs across subsequent frames of a video sequence [13],
[14]. Attempts have been made to integrate estimation of
motion fields (optical flow) into temporal stereo matching. The
methods of [15] and [16] perform smoothing of disparities
along motion vectors recovered from the video sequence. The
estimation of the motion field, however, prevents real-time
implementation, since state-of-the-art optical flow algorithms
do not, in general, approach real-time frame rates. In a related
approach, Sizintsev and Wildes [17], [18] used steerable
filters to obtain descriptors characterizing motion of image
features in both space and time. Unlike traditional algorithms,
their method performs matching on spatio-temporal motion
descriptors, rather than on pure pixel intensity values, which
leads to improved temporal coherence of disparity maps at the
cost of reduced accuracy at depth discontinuities.

Most recently, local stereo algorithms based on edge-aware
filters were extended to incorporate temporal evidence into
the matching process. The method of Richardt et al. [19]
employs a variant of the bilateral grid [20] implemented on
graphics hardware, which accelerates cost aggregation and
allows for weighted propagation of pixel dissimilarity metrics
from previous frames to the current one. Although this method
outperforms the baseline frame-to-frame approach, the amount
of hardware memory necessary to construct the bilateral grid
limits its application to single-channel, i.e., grayscale images
only. Hosni et al. [10], on the other hand, reformulated kernels
of the guided image filter to operate on both spatial and

temporal information, making it possible to process a temporal
collection of cost volumes. The filtering operation was shown
to preserve spatio-temporal edges present in the cost volumes,
resulting in increased temporal consistency of disparity maps,
greater robustness to image noise, and more accurate behavior
around object boundaries.

III. METHOD

The proposed temporal stereo matching algorithm is an
extension of the real-time iterative adaptive support-weight
algorithm described in [3]. In addition to real-time two-
pass aggregation of the cost values in the spatial domain,
the proposed algorithm enhances stereo matching on video
sequences by aggregating costs along the time dimension.
The operation of the algorithm has been divided into four
stages: 1) two-pass spatial cost aggregation, 2) temporal cost
aggregation, 3) disparity selection and confidence assessment,
and 4) iterative disparity refinement. In the following, each of
these stages is described in detail.

A. Two-Pass Spatial Cost Aggregation

Humans group shapes by observing the geometric distance
and color similarity of points in space. To mimic this vi-
sual grouping, the adaptive support-weight stereo matching
algorithm [4] considers a support window Ωp centered at the
pixel of interest p, and assigns a support weight to each pixel
q ∈ Ωp. The support weight relating pixels p and q is given
by

w(p, q) = exp

(
−∆g(p, q)

γg
− ∆c(p, q)

γc

)
, (1)

where ∆g(p, q) is the geometric distance, ∆c(p, q) is the color
difference between pixels p and q, and the coefficients γg and
γc regulate the strength of grouping by geometric distance and
color similarity, respectively.

To identify a match for the pixel of interest p, the real-time
iterative adaptive support-weight algorithm evaluates matching
costs between p and every match candidate p̄ ∈ Sp, where Sp

denotes a set of matching candidates associated with pixel p.
For a pair of pixels p and p̄, and their support windows Ωp

and Ωp̄, the initial matching cost is aggregated using

C(p, p̄) =

∑
q∈Ωp,q̄∈Ωp̄

w(p, q)w(p̄, q̄)δ(q, q̄)

∑
q∈Ωp,q̄∈Ωp̄

w(p, q)w(p̄, q̄)
, (2)

where the pixel dissimilarity metric δ(q, q̄) is chosen as the
sum of truncated absolute color differences between pixels q
and q̄. Here, the truncation of color difference for the red,
green, and blue components given by

δ(q, q̄) =
∑

c={r,g,b}

min(|qc − q̄c|, τ). (3)

This limits each of their magnitudes to at most τ , which pro-
vides additional robustness to outliers. Rather than evaluating
Equation (2) directly, real-time algorithms often approximate



the matching cost by performing two-pass aggregation using
two orthogonal 1D windows [5], [6], [8]. The two-pass method
first aggregates matching costs in the vertical direction, and
then computes a weighted sum of the aggregated costs in the
horizontal direction. Given that support regions are of size
ω × ω, the two-pass method reduces the complexity of cost
aggregation from O(ω2) to O(ω).

B. Temporal cost aggregation
Once aggregated costs C(p, p̄) have been computed for all

pixels p in the reference image and their respective matching
candidates p̄ in the target image, a single-pass temporal
aggregation routine is exectuted. At each time instance, the
algorithm stores an auxiliary cost Ca(p, p̄) which holds a
weighted summation of costs obtained in the previous frames.
During temporal aggregation, the auxiliary cost is merged with
the cost obtained from the current frame using

C(p, p̄)← (1− λ) · C(p, p̄) + λ · wt(p, pt-1) · Ca(p, p̄)

(1− λ) + λ · wt(p, pt-1)
, (4)

where the feedback coefficient λ controls the amount of cost
smoothing and wt(p, pt-1) enforces color similarity in the
temporal domain. The temporal adaptive weight computed
between the pixel of interest p in the current frame and pixel
pt-1, located at the same spatial coordinate in the prior frame,
is given by

wt(p, pt-1) = exp

(
−∆c(p, pt-1)

γt

)
, (5)

where γt regulates the strength of grouping by color similarity
in the temporal dimension. The temporal adaptive weight has
the effect of preserving edges in the temporal domain, such
that when a pixel coordinate transitions from one side of an
edge to another in subsequent frames, the auxiliary cost is
assigned a small weight and the majority of the cost is derived
from the current frame.

C. Disparity Selection and Confidence Assessment
Having performed temporal cost aggregation, matches are

determined using the Winner-Takes-All (WTA) match selec-
tion criteria. The match for p, denoted as m(p), is the can-
didate pixel p̄ ∈ Sp characterized by the minimum matching
cost, and is given by

m(p) = argmin
p̄∈Sp

C(p, p̄) . (6)

To asses the level of confidence associated with selecting
minimum cost matches, the algorithm determines another set
of matches, this time from the target to reference image, and
verifies if the results agree. Given that p̄ = m(p), i.e. pixel p̄
in the right image is the match for pixel p in the left image,
and p′ = m(p̄), the confidence measure Fp is computed as

Fp =


min

p̄∈Sp\m(p)
C(p, p̄)− min

p̄∈Sp

C(p, p̄)

min
p̄∈Sp\m(p)

C(p, p̄)
, |dp − dp′ | ≤ 1

0, otherwise

.

(7)

D. Iterative Disparity Refinement

Once the first iteration of stereo matching is complete,
disparity estimates Di

p can be used to guide matching in
subsequent iterations. This is done by penalizing disparities
that deviate from their expected values. The penalty function
is given by

Λi(p, p̄) = α×
∑
q∈Ωp

w(p, q)F i-1
q

∣∣Di-1
q − dp

∣∣ , (8)

where the value of α is chosen empirically. Next, the penalty
values are incorporated into the matching cost as

Ci(p, p̄) = C0(p, p̄) + Λi(p, p̄) , (9)

and the matches are reselected using the WTA match selection
criteria. The resulting disparity maps are then post-processed
using a combination of median filtering and occlusion filling.
Finally, the current cost becomes the auxiliary cost for the next
pair of frames in the video sequence, i.e., Ca(p, p̄)← C(p, p̄)
for all pixels p in the and their matching candidates p̄.

IV. RESULTS

The speed and accuracy of real-time stereo matching al-
gorithms are traditionally demonstrated using still-frame im-
ages from the Middlebury stereo benchmark [1], [2]. Still
frames, however, are insufficient for evaluating stereo match-
ing algorithms that incorporate frame-to-frame prediction to
enhance matching accuracy. An alternative approach is to
use a stereo video sequence with a ground truth disparity
for each frame. Obtaining the ground truth disparity of real
world video sequences is a difficult undertaking due to the
high frame rate of video and limitations in depth sensing-
technology. To address the need for stereo video with ground
truth disparities, five pairs of synthetic stereo video sequences
of a computer-generated scene were given in [19]. While these
videos incorporate a sufficient amount of movement variation,
they were generated from relatively simple models using low-
resolution rendering, and they do not provide occlusion or
discontinuity maps.

To evaluate the performance of temporal aggregation, a
new synthetic stereo video sequence is introduced along with
corresponding disparity maps, occlusion maps, and disconti-
nuity maps for evaluating the performance of temporal stereo
matching algorithms. To create the video sequence, a complex
scene was constructed using Google Sketchup and a pair
of animated paths were rendered photorealistically using the
Kerkythea rendering software. Realistic material properties
were used to give surfaces a natural-looking appearance by
adjusting their specularity, reflectance, and diffusion. The
video sequence has a resolution of 640 × 480 pixels, a
frame rate of 30 frames per second, and a duration of 4
seconds. In addition to performing photorealistic rendering,
depth renders of both video sequences were also generated and
converted to ground truth disparity for the stereo video. The
video sequences and ground truth data have been made avail-
able at http://mc2.unl.edu/current-research
/image-processing/. Figure 2 shows two sample frames



of the synthetic stereo scene from a single camera perspective,
along with the ground truth disparity, occlusion map, and
discontinuity map.

Frame 30 Frame 90

Figure 2: Two sample frames from the synthetic video se-
quence (1st row), along with their corresponding ground truth
disparity (2nd row), occlusion map (3rd row), and discontinuity
map (4th row).

The results of temporal stereo matching are given in Figure
3 for uniform additive noise confined to the ranges of ±0,
±20, and ±40. Each performance plot is given as a function
of the feedback coefficient λ. As with the majority of temporal
stereo matching methods, improvements are negligible when
no noise is added to the images [10], [19]. This is largely due
to the fact that the video used to evaluate these methods is
computer generated with very little noise to start with, thus
the noise suppression achieved with temporal stereo matching
shows little to no improvement over methods that operate on
pairs of images.

Significant improvements in accuracy can be seen in Figure
3 when the noise has ranges of ±20, and ±40. In this scenario,
the effect of noise in the current frame is reduced by increasing
the feedback coefficient λ. This increasing of λ has the effect
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Figure 3: Performance of temporal matching at different levels
of uniformly distributed image noise {±0,±20,±40}. Mean
squared error (MSE) of disparities is plotted versus the values
of the feedback coefficient λ. Dashed lines correspond to the
values of MSE obtained without temporal aggregation.

Table I: Parameters used in the evaluation of real-time tempo-
ral stereo matching.

Symbol Description Value
ω Window size for cost aggregation 33
τ Color difference truncation value 40
γc Strength of grouping by color similarity 1 0.03
γg Strength of grouping by proximity 1 0.03
λ Temporal feedback coefficient varied
γt Strength of temporal grouping 0.01
k Number of iterations in refinement stage 3
α Disparity difference penalty 0.08

1 To enable propagation of disparity information in the iterative
refinement stage, the values of γc and γg were set to 0.09 and
0.01, respectively.
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Figure 4: Optimal values of the feedback coefficient λ cor-
responding to the smallest mean squared error (MSE) of the
disparity estimates for a range of noise strengths.

of averaging out noise in the per-pixel costs by selecting
matches based more heavily upon the auxiliary cost, which
is essentially a much more stable running average of the cost



over the most recent frames. By maintaining a reasonably
high value of γt, the auxiliary cost also preserves temporal
edges, essentially reducing over-smoothing of a pixel’s dis-
parity when a pixel transitions from one depth to another in
subsequent frames.

Figure 5: A comparison of stereo matching without temporal
cost aggregation (top) and with temporal cost aggregation
(bottom) for a single frame in the synthetic video sequence
where the noise is ±30 and the feedback coefficient is λ = 0.8.

The optimal value of the feedback coefficient is largely
dependent on the noise being added to the image. Figure 4
shows the optimal values of λ for noise ranging between ±0
to ±40. As intuition would suggest, it is more beneficial to
rely on the auxiliary cost when noise is high and it is more
beneficial to rely on the current cost when noise is low. Figure
5 illustrates the improvements that are achieved when applying
temporal stereo matching to a particular pair of frames in the
synthetic video sequence. Clearly, the noise in the disparity
map is drastically reduced when temporal stereo matching is
used.

The algorithm was implement using NVIDIA’s Compute
Unified Device Architecture (CUDA). The details of the im-
plementation are similar to those given in [3]. When compared
to other existing real-time stereo matching implementations,

the proposed implementation achieves the highest speed of
operation measured by the number of disparity hypotheses
evaluated per second, as shown in Table II. It is also the second
most accurate real-time method in terms of error rate, as
measured using the Middlebury stereo evaluation benchmark.
It should be noted that it is difficult to establish an unbiased
metric for speed comparisons, as the architecture, number of
cores, and clock speed of graphics hardware used are not
consistent across implementations.

Table II: A comparison of speed and accuracy for the imple-
mentations of many leading real-time stereo matching meth-
ods.

Method GPU MDE/s1 FPS2 Error3

Our Method GeForce GTX 680 215.7 90 6.20
CostFilter [10] GeForce GTX 480 57.9 24 5.55

FastBilateral [7] Tesla C2070 50.6 21 7.31
RealtimeBFV [8] GeForce 8800 GTX 114.3 46 7.65
RealtimeBP [21] GeForce 7900 GTX 20.9 8 7.69

ESAW [6] GeForce 8800 GTX 194.8 79 8.21
RealTimeGPU [5] Radeon XL1800 52.8 21 9.82

DCBGrid [19] Quadro FX 5800 25.1 10 10.90
1 Millions of Disparity Estimates per Second.
2 Assumes 320× 240 images with 32 disparity levels.
3 As measured by the Middlebury stereo performance benchmark using

the avgerage % of bad pixels.

V. CONCLUSION

While the majority of stereo matching algorithms focus
on achieving high accuracy on still images, the volume of
research aimed at recovery of temporally consistent disparity
maps remains disproportionally small. This paper introduces
an efficient temporal cost aggregation scheme that can easily
be combined with conventional spatial cost aggregation to
improve the accuracy of stereo matching when operating on
video sequences. A synthetic video sequence, along with
ground truth disparity data, was generated to evaluate the
performance of the proposed method. It was shown that
temporal aggregation is significantly more robust to noise than
a method that only considers the current stereo frames.
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