Spaces:
Sleeping
Sleeping
Hugo Flores Garcia
commited on
Commit
•
09b9691
1
Parent(s):
3f6f517
settling down on the new sampling routine
Browse files- conf/generated/breaks-steps/c2f.yml +15 -0
- conf/generated/breaks-steps/coarse.yml +8 -0
- conf/generated/breaks-steps/interface.yml +7 -0
- demo-new.py +0 -518
- demo.py +28 -70
- scripts/exp/train.py +2 -25
- vampnet/interface.py +7 -6
- vampnet/modules/transformer.py +24 -24
conf/generated/breaks-steps/c2f.yml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
$include:
|
2 |
+
- conf/lora/lora.yml
|
3 |
+
AudioDataset.duration: 3.0
|
4 |
+
AudioDataset.loudness_cutoff: -40.0
|
5 |
+
VampNet.embedding_dim: 1280
|
6 |
+
VampNet.n_codebooks: 14
|
7 |
+
VampNet.n_conditioning_codebooks: 4
|
8 |
+
VampNet.n_heads: 20
|
9 |
+
VampNet.n_layers: 16
|
10 |
+
fine_tune: true
|
11 |
+
fine_tune_checkpoint: ./models/spotdl/c2f.pth
|
12 |
+
save_path: ./runs/breaks-steps/c2f
|
13 |
+
train/AudioLoader.sources: &id001
|
14 |
+
- /media/CHONK/hugo/breaks-steps
|
15 |
+
val/AudioLoader.sources: *id001
|
conf/generated/breaks-steps/coarse.yml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
$include:
|
2 |
+
- conf/lora/lora.yml
|
3 |
+
fine_tune: true
|
4 |
+
fine_tune_checkpoint: ./models/spotdl/coarse.pth
|
5 |
+
save_path: ./runs/breaks-steps/coarse
|
6 |
+
train/AudioLoader.sources: &id001
|
7 |
+
- /media/CHONK/hugo/breaks-steps
|
8 |
+
val/AudioLoader.sources: *id001
|
conf/generated/breaks-steps/interface.yml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
AudioLoader.sources:
|
2 |
+
- - /media/CHONK/hugo/breaks-steps
|
3 |
+
Interface.coarse2fine_ckpt: ./models/spotdl/c2f.pth
|
4 |
+
Interface.coarse2fine_lora_ckpt: ./runs/breaks-steps/c2f/latest/lora.pth
|
5 |
+
Interface.coarse_ckpt: ./models/spotdl/coarse.pth
|
6 |
+
Interface.coarse_lora_ckpt: ./runs/breaks-steps/coarse/latest/lora.pth
|
7 |
+
Interface.codec_ckpt: ./models/spotdl/codec.pth
|
demo-new.py
DELETED
@@ -1,518 +0,0 @@
|
|
1 |
-
from pathlib import Path
|
2 |
-
from typing import Tuple
|
3 |
-
import yaml
|
4 |
-
import tempfile
|
5 |
-
import uuid
|
6 |
-
from dataclasses import dataclass, asdict
|
7 |
-
|
8 |
-
import numpy as np
|
9 |
-
import audiotools as at
|
10 |
-
import argbind
|
11 |
-
|
12 |
-
import gradio as gr
|
13 |
-
from vampnet.interface import Interface
|
14 |
-
from vampnet import mask as pmask
|
15 |
-
|
16 |
-
import logging
|
17 |
-
logger = logging.getLogger()
|
18 |
-
logger.setLevel(logging.CRITICAL)
|
19 |
-
|
20 |
-
Interface = argbind.bind(Interface)
|
21 |
-
AudioLoader = argbind.bind(at.data.datasets.AudioLoader)
|
22 |
-
|
23 |
-
conf = argbind.parse_args()
|
24 |
-
|
25 |
-
with argbind.scope(conf):
|
26 |
-
interface = Interface()
|
27 |
-
loader = AudioLoader()
|
28 |
-
print(f"interface device is {interface.device}")
|
29 |
-
|
30 |
-
dataset = at.data.datasets.AudioDataset(
|
31 |
-
loader,
|
32 |
-
sample_rate=interface.codec.sample_rate,
|
33 |
-
duration=interface.coarse.chunk_size_s,
|
34 |
-
n_examples=5000,
|
35 |
-
without_replacement=True,
|
36 |
-
)
|
37 |
-
|
38 |
-
|
39 |
-
checkpoints = {
|
40 |
-
"spotdl": {
|
41 |
-
"coarse": "./models/spotdl/coarse.pth",
|
42 |
-
"c2f": "./models/spotdl/c2f.pth",
|
43 |
-
"codec": "./models/spotdl/codec.pth",
|
44 |
-
"full_ckpt": True
|
45 |
-
},
|
46 |
-
"berta": {
|
47 |
-
"coarse": "./models/finetuned/berta-goldman-speech/coarse.pth",
|
48 |
-
"c2f": "./models/finetuned/berta-goldman-speech/c2f.pth",
|
49 |
-
"codec": "./model/spotdl/codec.pth",
|
50 |
-
"full_ckpt": True
|
51 |
-
},
|
52 |
-
"xeno-canto-2": {
|
53 |
-
"coarse": "./models/finetuned/xeno-canto-2/coarse.pth",
|
54 |
-
"c2f": "./models/finetuned/xeno-canto-2/c2f.pth",
|
55 |
-
"codec": "./models/spotdl/codec.pth",
|
56 |
-
"full_ckpt": True
|
57 |
-
},
|
58 |
-
"panchos": {
|
59 |
-
"coarse": "./models/finetuned/panchos/coarse.pth",
|
60 |
-
"c2f": "./models/finetuned/panchos/c2f.pth",
|
61 |
-
"codec": "./models/spotdl/codec.pth",
|
62 |
-
"full_ckpt": False
|
63 |
-
},
|
64 |
-
"tv-choir": {
|
65 |
-
"coarse": "./models/finetuned/tv-choir/coarse.pth",
|
66 |
-
"c2f": "./models/finetuned/tv-choir/c2f.pth",
|
67 |
-
"codec": "./models/spotdl/codec.pth",
|
68 |
-
"full_ckpt": False
|
69 |
-
},
|
70 |
-
"titi": {
|
71 |
-
"coarse": "./models/finetuned/titi/coarse.pth",
|
72 |
-
"c2f": "./models/finetuned/titi/c2f.pth",
|
73 |
-
"codec": "./models/spotdl/codec.pth",
|
74 |
-
"full_ckpt": False
|
75 |
-
},
|
76 |
-
"titi-clean": {
|
77 |
-
"coarse": "./models/finetuned/titi-clean/coarse.pth",
|
78 |
-
"c2f": "./models/finetuned/titi-clean/c2f.pth",
|
79 |
-
"codec": "./models/spotdl/codec.pth",
|
80 |
-
"full_ckpt": False
|
81 |
-
}
|
82 |
-
}
|
83 |
-
interface.checkpoint_key = "spotdl"
|
84 |
-
|
85 |
-
|
86 |
-
OUT_DIR = Path("gradio-outputs")
|
87 |
-
OUT_DIR.mkdir(exist_ok=True, parents=True)
|
88 |
-
|
89 |
-
|
90 |
-
def load_audio(file):
|
91 |
-
print(file)
|
92 |
-
filepath = file.name
|
93 |
-
sig = at.AudioSignal.salient_excerpt(
|
94 |
-
filepath,
|
95 |
-
duration=interface.coarse.chunk_size_s
|
96 |
-
)
|
97 |
-
sig = interface.preprocess(sig)
|
98 |
-
|
99 |
-
out_dir = OUT_DIR / "tmp" / str(uuid.uuid4())
|
100 |
-
out_dir.mkdir(parents=True, exist_ok=True)
|
101 |
-
sig.write(out_dir / "input.wav")
|
102 |
-
return sig.path_to_file
|
103 |
-
|
104 |
-
|
105 |
-
def load_random_audio():
|
106 |
-
index = np.random.randint(0, len(dataset))
|
107 |
-
sig = dataset[index]["signal"]
|
108 |
-
sig = interface.preprocess(sig)
|
109 |
-
|
110 |
-
out_dir = OUT_DIR / "tmp" / str(uuid.uuid4())
|
111 |
-
out_dir.mkdir(parents=True, exist_ok=True)
|
112 |
-
sig.write(out_dir / "input.wav")
|
113 |
-
return sig.path_to_file
|
114 |
-
|
115 |
-
|
116 |
-
def _vamp(data, return_mask=False):
|
117 |
-
|
118 |
-
# if our checkpoint key is different, we need to load a new checkpoint
|
119 |
-
if data[checkpoint_key] != interface.checkpoint_key:
|
120 |
-
print(f"loading checkpoint {data[checkpoint_key]}")
|
121 |
-
interface.lora_load(
|
122 |
-
checkpoints[data[checkpoint_key]]["coarse"],
|
123 |
-
checkpoints[data[checkpoint_key]]["c2f"],
|
124 |
-
checkpoints[data[checkpoint_key]]["full_ckpt"],
|
125 |
-
)
|
126 |
-
interface.checkpoint_key = data[checkpoint_key]
|
127 |
-
|
128 |
-
out_dir = OUT_DIR / str(uuid.uuid4())
|
129 |
-
out_dir.mkdir()
|
130 |
-
sig = at.AudioSignal(data[input_audio])
|
131 |
-
#pitch shift input
|
132 |
-
sig = sig.shift_pitch(data[input_pitch_shift])
|
133 |
-
|
134 |
-
# TODO: random pitch shift of segments in the signal to prompt! window size should be a parameter, pitch shift width should be a parameter
|
135 |
-
|
136 |
-
z = interface.encode(sig)
|
137 |
-
|
138 |
-
ncc = data[n_conditioning_codebooks]
|
139 |
-
|
140 |
-
# build the mask
|
141 |
-
mask = pmask.linear_random(z, data[rand_mask_intensity])
|
142 |
-
mask = pmask.mask_and(
|
143 |
-
mask, pmask.inpaint(
|
144 |
-
z,
|
145 |
-
interface.s2t(data[prefix_s]),
|
146 |
-
interface.s2t(data[suffix_s])
|
147 |
-
)
|
148 |
-
)
|
149 |
-
mask = pmask.mask_and(
|
150 |
-
mask, pmask.periodic_mask(
|
151 |
-
z,
|
152 |
-
data[periodic_p],
|
153 |
-
data[periodic_w],
|
154 |
-
random_roll=True
|
155 |
-
)
|
156 |
-
)
|
157 |
-
if data[onset_mask_width] > 0:
|
158 |
-
mask = pmask.mask_or(
|
159 |
-
mask, pmask.onset_mask(sig, z, interface, width=data[onset_mask_width])
|
160 |
-
)
|
161 |
-
# these should be the last two mask ops
|
162 |
-
mask = pmask.dropout(mask, data[dropout])
|
163 |
-
mask = pmask.codebook_unmask(mask, ncc)
|
164 |
-
|
165 |
-
print(f"created mask with: linear random {data[rand_mask_intensity]}, inpaint {data[prefix_s]}:{data[suffix_s]}, periodic {data[periodic_p]}:{data[periodic_w]}, dropout {data[dropout]}, codebook unmask {ncc}, onset mask {data[onset_mask_width]}, num steps {data[num_steps]}, init temp {data[init_temp]}, final temp {data[final_temp]}, use coarse2fine {data[use_coarse2fine]}")
|
166 |
-
# save the mask as a txt file
|
167 |
-
np.savetxt(out_dir / "mask.txt", mask[:,0,:].long().cpu().numpy())
|
168 |
-
|
169 |
-
# if data[topk] is not None:
|
170 |
-
# top_k = data[topk] if data[topk] > 0 else None
|
171 |
-
# else:
|
172 |
-
# top_k = None
|
173 |
-
|
174 |
-
zv, mask_z = interface.coarse_vamp(
|
175 |
-
z,
|
176 |
-
mask=mask,
|
177 |
-
sampling_steps=data[num_steps],
|
178 |
-
temperature=(data[init_temp]*10, data[final_temp]*10),
|
179 |
-
return_mask=True,
|
180 |
-
# sample=data[sampling_strategy],
|
181 |
-
typical_filtering=data[typical_filtering],
|
182 |
-
typical_mass=data[typical_mass],
|
183 |
-
typical_min_tokens=data[typical_min_tokens],
|
184 |
-
# top_k=top_k,
|
185 |
-
gen_fn=interface.coarse.generate,
|
186 |
-
)
|
187 |
-
|
188 |
-
if use_coarse2fine:
|
189 |
-
zv = interface.coarse_to_fine(zv)
|
190 |
-
|
191 |
-
sig = interface.to_signal(zv).cpu()
|
192 |
-
print("done")
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
sig.write(out_dir / "output.wav")
|
197 |
-
|
198 |
-
if return_mask:
|
199 |
-
mask = interface.to_signal(mask_z).cpu()
|
200 |
-
mask.write(out_dir / "mask.wav")
|
201 |
-
return sig.path_to_file, mask.path_to_file
|
202 |
-
else:
|
203 |
-
return sig.path_to_file
|
204 |
-
|
205 |
-
def vamp(data):
|
206 |
-
return _vamp(data, return_mask=True)
|
207 |
-
|
208 |
-
def api_vamp(data):
|
209 |
-
return _vamp(data, return_mask=False)
|
210 |
-
|
211 |
-
def save_vamp(data):
|
212 |
-
out_dir = OUT_DIR / "saved" / str(uuid.uuid4())
|
213 |
-
out_dir.mkdir(parents=True, exist_ok=True)
|
214 |
-
|
215 |
-
sig_in = at.AudioSignal(data[input_audio])
|
216 |
-
sig_out = at.AudioSignal(data[output_audio])
|
217 |
-
|
218 |
-
sig_in.write(out_dir / "input.wav")
|
219 |
-
sig_out.write(out_dir / "output.wav")
|
220 |
-
|
221 |
-
_data = {
|
222 |
-
"init_temp": data[init_temp],
|
223 |
-
"final_temp": data[final_temp],
|
224 |
-
"prefix_s": data[prefix_s],
|
225 |
-
"suffix_s": data[suffix_s],
|
226 |
-
"rand_mask_intensity": data[rand_mask_intensity],
|
227 |
-
"num_steps": data[num_steps],
|
228 |
-
"notes": data[notes_text],
|
229 |
-
"periodic_period": data[periodic_p],
|
230 |
-
"periodic_width": data[periodic_w],
|
231 |
-
"n_conditioning_codebooks": data[n_conditioning_codebooks],
|
232 |
-
"use_coarse2fine": data[use_coarse2fine],
|
233 |
-
"stretch_factor": data[stretch_factor],
|
234 |
-
}
|
235 |
-
|
236 |
-
# save with yaml
|
237 |
-
with open(out_dir / "data.yaml", "w") as f:
|
238 |
-
yaml.dump(_data, f)
|
239 |
-
|
240 |
-
import zipfile
|
241 |
-
zip_path = out_dir.with_suffix(".zip")
|
242 |
-
with zipfile.ZipFile(zip_path, "w") as zf:
|
243 |
-
for file in out_dir.iterdir():
|
244 |
-
zf.write(file, file.name)
|
245 |
-
|
246 |
-
return f"saved! your save code is {out_dir.stem}", zip_path
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
with gr.Blocks() as demo:
|
251 |
-
|
252 |
-
with gr.Row():
|
253 |
-
with gr.Column():
|
254 |
-
use_coarse2fine = gr.Checkbox(
|
255 |
-
label="use coarse2fine",
|
256 |
-
value=True
|
257 |
-
)
|
258 |
-
|
259 |
-
manual_audio_upload = gr.File(
|
260 |
-
label=f"upload some audio (will be randomly trimmed to max of {interface.coarse.chunk_size_s:.2f}s)",
|
261 |
-
file_types=["audio"]
|
262 |
-
)
|
263 |
-
load_random_audio_button = gr.Button("or load random audio")
|
264 |
-
|
265 |
-
input_audio = gr.Audio(
|
266 |
-
label="input audio",
|
267 |
-
interactive=False,
|
268 |
-
type="filepath",
|
269 |
-
)
|
270 |
-
|
271 |
-
audio_mask = gr.Audio(
|
272 |
-
label="audio mask (listen to this to hear the mask hints)",
|
273 |
-
interactive=False,
|
274 |
-
type="filepath",
|
275 |
-
)
|
276 |
-
|
277 |
-
# connect widgets
|
278 |
-
load_random_audio_button.click(
|
279 |
-
fn=load_random_audio,
|
280 |
-
inputs=[],
|
281 |
-
outputs=[ input_audio]
|
282 |
-
)
|
283 |
-
|
284 |
-
manual_audio_upload.change(
|
285 |
-
fn=load_audio,
|
286 |
-
inputs=[manual_audio_upload],
|
287 |
-
outputs=[ input_audio]
|
288 |
-
)
|
289 |
-
|
290 |
-
# mask settings
|
291 |
-
with gr.Column():
|
292 |
-
|
293 |
-
input_pitch_shift = gr.Slider(
|
294 |
-
label="input pitch shift (semitones)",
|
295 |
-
minimum=-36,
|
296 |
-
maximum=36,
|
297 |
-
step=1,
|
298 |
-
value=0,
|
299 |
-
)
|
300 |
-
|
301 |
-
rand_mask_intensity = gr.Slider(
|
302 |
-
label="random mask intensity. (If this is less than 1, scatters prompts throughout the audio, should be between 0.9 and 1.0)",
|
303 |
-
minimum=0.0,
|
304 |
-
maximum=1.0,
|
305 |
-
value=1.0
|
306 |
-
)
|
307 |
-
|
308 |
-
periodic_p = gr.Slider(
|
309 |
-
label="periodic prompt (0.0 means no hint, 2 - lots of hints, 8 - a couple of hints, 16 - occasional hint, 32 - very occasional hint, etc)",
|
310 |
-
minimum=0,
|
311 |
-
maximum=128,
|
312 |
-
step=1,
|
313 |
-
value=3,
|
314 |
-
)
|
315 |
-
periodic_w = gr.Slider(
|
316 |
-
label="periodic prompt width (steps, 1 step ~= 10milliseconds)",
|
317 |
-
minimum=1,
|
318 |
-
maximum=20,
|
319 |
-
step=1,
|
320 |
-
value=1,
|
321 |
-
)
|
322 |
-
|
323 |
-
onset_mask_width = gr.Slider(
|
324 |
-
label="onset mask width (steps, 1 step ~= 10milliseconds)",
|
325 |
-
minimum=0,
|
326 |
-
maximum=20,
|
327 |
-
step=1,
|
328 |
-
value=5,
|
329 |
-
)
|
330 |
-
|
331 |
-
with gr.Accordion("extras ", open=False):
|
332 |
-
n_conditioning_codebooks = gr.Number(
|
333 |
-
label="number of conditioning codebooks. probably 0",
|
334 |
-
value=0,
|
335 |
-
precision=0,
|
336 |
-
)
|
337 |
-
|
338 |
-
stretch_factor = gr.Slider(
|
339 |
-
label="time stretch factor",
|
340 |
-
minimum=0,
|
341 |
-
maximum=64,
|
342 |
-
step=1,
|
343 |
-
value=1,
|
344 |
-
)
|
345 |
-
|
346 |
-
|
347 |
-
with gr.Accordion("prefix/suffix hints", open=False):
|
348 |
-
prefix_s = gr.Slider(
|
349 |
-
label="prefix hint length (seconds)",
|
350 |
-
minimum=0.0,
|
351 |
-
maximum=10.0,
|
352 |
-
value=0.0
|
353 |
-
)
|
354 |
-
suffix_s = gr.Slider(
|
355 |
-
label="suffix hint length (seconds)",
|
356 |
-
minimum=0.0,
|
357 |
-
maximum=10.0,
|
358 |
-
value=0.0
|
359 |
-
)
|
360 |
-
|
361 |
-
with gr.Accordion("temperature settings", open=False):
|
362 |
-
init_temp = gr.Slider(
|
363 |
-
label="initial temperature (should probably stay between 0.6 and 1)",
|
364 |
-
minimum=0.0,
|
365 |
-
maximum=1.5,
|
366 |
-
value=0.8
|
367 |
-
)
|
368 |
-
final_temp = gr.Slider(
|
369 |
-
label="final temperature (should probably stay between 0.7 and 2)",
|
370 |
-
minimum=0.0,
|
371 |
-
maximum=2.0,
|
372 |
-
value=0.8
|
373 |
-
)
|
374 |
-
|
375 |
-
with gr.Accordion("sampling settings", open=False):
|
376 |
-
sampling_strategy = gr.Radio(
|
377 |
-
label="sampling strategy",
|
378 |
-
choices=["gumbel", "multinomial"],
|
379 |
-
value="gumbel"
|
380 |
-
)
|
381 |
-
typical_filtering = gr.Checkbox(
|
382 |
-
label="typical filtering (cannot be used with topk)",
|
383 |
-
value=False
|
384 |
-
)
|
385 |
-
typical_mass = gr.Slider(
|
386 |
-
label="typical mass (should probably stay between 0.1 and 0.5)",
|
387 |
-
minimum=0.01,
|
388 |
-
maximum=0.99,
|
389 |
-
value=0.2
|
390 |
-
)
|
391 |
-
typical_min_tokens = gr.Slider(
|
392 |
-
label="typical min tokens (should probably stay between 1 and 256)",
|
393 |
-
minimum=1,
|
394 |
-
maximum=256,
|
395 |
-
step=1,
|
396 |
-
value=1
|
397 |
-
)
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
num_steps = gr.Slider(
|
403 |
-
label="number of steps (should normally be between 12 and 36)",
|
404 |
-
minimum=1,
|
405 |
-
maximum=128,
|
406 |
-
step=1,
|
407 |
-
value=36
|
408 |
-
)
|
409 |
-
|
410 |
-
dropout = gr.Slider(
|
411 |
-
label="mask dropout",
|
412 |
-
minimum=0.0,
|
413 |
-
maximum=1.0,
|
414 |
-
step=0.01,
|
415 |
-
value=0.0
|
416 |
-
)
|
417 |
-
|
418 |
-
|
419 |
-
# mask settings
|
420 |
-
with gr.Column():
|
421 |
-
checkpoint_key = gr.Radio(
|
422 |
-
label="checkpoint",
|
423 |
-
choices=list(checkpoints.keys()),
|
424 |
-
value="spotdl"
|
425 |
-
)
|
426 |
-
vamp_button = gr.Button("vamp!!!")
|
427 |
-
output_audio = gr.Audio(
|
428 |
-
label="output audio",
|
429 |
-
interactive=False,
|
430 |
-
type="filepath"
|
431 |
-
)
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
# with gr.Column():
|
436 |
-
# with gr.Accordion(label="beat unmask (how much time around the beat should be hinted?)"):
|
437 |
-
# use_beats = gr.Checkbox(
|
438 |
-
# label="use beat hints (helps the output stick to the beat structure of the input)",
|
439 |
-
# value=False
|
440 |
-
# )
|
441 |
-
|
442 |
-
# snap_to_beats = gr.Checkbox(
|
443 |
-
# label="trim to beat markers (uncheck if the output audio is too short.)",
|
444 |
-
# value=True
|
445 |
-
# )
|
446 |
-
|
447 |
-
# beat_unmask_dur = gr.Slider(
|
448 |
-
# label="duration",
|
449 |
-
# minimum=0.0,
|
450 |
-
# maximum=3.0,
|
451 |
-
# value=0.07
|
452 |
-
# )
|
453 |
-
|
454 |
-
|
455 |
-
notes_text = gr.Textbox(
|
456 |
-
label="type any notes about the generated audio here",
|
457 |
-
value="",
|
458 |
-
interactive=True
|
459 |
-
)
|
460 |
-
save_button = gr.Button("save vamp")
|
461 |
-
download_file = gr.File(
|
462 |
-
label="vamp to download will appear here",
|
463 |
-
interactive=False
|
464 |
-
)
|
465 |
-
use_as_input_button = gr.Button("use output as input")
|
466 |
-
|
467 |
-
thank_you = gr.Markdown("")
|
468 |
-
|
469 |
-
|
470 |
-
_inputs = {
|
471 |
-
input_audio,
|
472 |
-
num_steps,
|
473 |
-
init_temp, final_temp,
|
474 |
-
prefix_s, suffix_s,
|
475 |
-
rand_mask_intensity,
|
476 |
-
periodic_p, periodic_w,
|
477 |
-
n_conditioning_codebooks,
|
478 |
-
dropout,
|
479 |
-
use_coarse2fine,
|
480 |
-
stretch_factor,
|
481 |
-
onset_mask_width,
|
482 |
-
input_pitch_shift,
|
483 |
-
sampling_strategy,
|
484 |
-
typical_filtering,
|
485 |
-
typical_mass,
|
486 |
-
typical_min_tokens,
|
487 |
-
# topk,
|
488 |
-
checkpoint_key
|
489 |
-
}
|
490 |
-
|
491 |
-
# connect widgets
|
492 |
-
vamp_button.click(
|
493 |
-
fn=vamp,
|
494 |
-
inputs=_inputs,
|
495 |
-
outputs=[output_audio, audio_mask],
|
496 |
-
)
|
497 |
-
|
498 |
-
api_vamp_button = gr.Button("api vamp")
|
499 |
-
api_vamp_button.click(
|
500 |
-
fn=api_vamp,
|
501 |
-
inputs=_inputs,
|
502 |
-
outputs=[output_audio],
|
503 |
-
api_name="vamp"
|
504 |
-
)
|
505 |
-
|
506 |
-
use_as_input_button.click(
|
507 |
-
fn=lambda x: x,
|
508 |
-
inputs=[output_audio],
|
509 |
-
outputs=[input_audio]
|
510 |
-
)
|
511 |
-
|
512 |
-
save_button.click(
|
513 |
-
fn=save_vamp,
|
514 |
-
inputs=_inputs | {notes_text, output_audio},
|
515 |
-
outputs=[thank_you, download_file]
|
516 |
-
)
|
517 |
-
|
518 |
-
demo.launch(share=True, enable_queue=False, debug=True, server_name="0.0.0.0")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo.py
CHANGED
@@ -68,7 +68,19 @@ checkpoints = {
|
|
68 |
"c2f": "./models/finetuned/titi/c2f.pth",
|
69 |
"codec": "./models/spotdl/codec.pth",
|
70 |
"full_ckpt": False
|
71 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
}
|
73 |
interface.checkpoint_key = "spotdl"
|
74 |
|
@@ -112,10 +124,8 @@ def _vamp(data, return_mask=False):
|
|
112 |
checkpoints[data[checkpoint_key]]["coarse"],
|
113 |
checkpoints[data[checkpoint_key]]["c2f"],
|
114 |
checkpoints[data[checkpoint_key]]["full_ckpt"],
|
115 |
-
reset=(data[checkpoint_key] == "spotdl")
|
116 |
)
|
117 |
interface.checkpoint_key = data[checkpoint_key]
|
118 |
-
|
119 |
|
120 |
out_dir = OUT_DIR / str(uuid.uuid4())
|
121 |
out_dir.mkdir()
|
@@ -154,30 +164,24 @@ def _vamp(data, return_mask=False):
|
|
154 |
mask = pmask.dropout(mask, data[dropout])
|
155 |
mask = pmask.codebook_unmask(mask, ncc)
|
156 |
|
157 |
-
print(f"created mask with: linear random {data[rand_mask_intensity]}, inpaint {data[prefix_s]}:{data[suffix_s]}, periodic {data[periodic_p]}:{data[periodic_w]}, dropout {data[dropout]}, codebook unmask {ncc}, onset mask {data[onset_mask_width]}, num steps {data[num_steps]}, init temp {data[
|
158 |
# save the mask as a txt file
|
159 |
np.savetxt(out_dir / "mask.txt", mask[:,0,:].long().cpu().numpy())
|
160 |
|
161 |
-
if data[topk] is not None:
|
162 |
-
top_k = data[topk] if data[topk] > 0 else None
|
163 |
-
else:
|
164 |
-
top_k = None
|
165 |
-
|
166 |
zv, mask_z = interface.coarse_vamp(
|
167 |
z,
|
168 |
mask=mask,
|
169 |
sampling_steps=data[num_steps],
|
170 |
-
temperature=
|
171 |
return_mask=True,
|
172 |
-
sample=data[sampling_strategy],
|
173 |
typical_filtering=data[typical_filtering],
|
174 |
typical_mass=data[typical_mass],
|
175 |
typical_min_tokens=data[typical_min_tokens],
|
176 |
-
|
177 |
)
|
178 |
|
179 |
if use_coarse2fine:
|
180 |
-
zv = interface.coarse_to_fine(zv)
|
181 |
|
182 |
sig = interface.to_signal(zv).cpu()
|
183 |
print("done")
|
@@ -210,8 +214,7 @@ def save_vamp(data):
|
|
210 |
sig_out.write(out_dir / "output.wav")
|
211 |
|
212 |
_data = {
|
213 |
-
"
|
214 |
-
"final_temp": data[final_temp],
|
215 |
"prefix_s": data[prefix_s],
|
216 |
"suffix_s": data[suffix_s],
|
217 |
"rand_mask_intensity": data[rand_mask_intensity],
|
@@ -349,53 +352,32 @@ with gr.Blocks() as demo:
|
|
349 |
value=0.0
|
350 |
)
|
351 |
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
)
|
359 |
-
final_temp = gr.Slider(
|
360 |
-
label="final temperature (should probably stay between 0.7 and 2)",
|
361 |
-
minimum=0.0,
|
362 |
-
maximum=2.0,
|
363 |
-
value=1.0
|
364 |
-
)
|
365 |
|
366 |
with gr.Accordion("sampling settings", open=False):
|
367 |
-
sampling_strategy = gr.Radio(
|
368 |
-
label="sampling strategy",
|
369 |
-
choices=["gumbel", "multinomial"],
|
370 |
-
value="gumbel"
|
371 |
-
)
|
372 |
typical_filtering = gr.Checkbox(
|
373 |
-
label="typical filtering
|
374 |
value=True
|
375 |
)
|
376 |
typical_mass = gr.Slider(
|
377 |
label="typical mass (should probably stay between 0.1 and 0.5)",
|
378 |
minimum=0.01,
|
379 |
maximum=0.99,
|
380 |
-
value=0.
|
381 |
)
|
382 |
typical_min_tokens = gr.Slider(
|
383 |
label="typical min tokens (should probably stay between 1 and 256)",
|
384 |
minimum=1,
|
385 |
maximum=256,
|
386 |
step=1,
|
387 |
-
value=
|
388 |
-
)
|
389 |
-
topk = gr.Slider(
|
390 |
-
label="topk (cannot be used with typical filtering). 0 = None",
|
391 |
-
minimum=0,
|
392 |
-
maximum=256,
|
393 |
-
step=1,
|
394 |
-
value=0
|
395 |
)
|
396 |
|
397 |
-
|
398 |
-
|
399 |
num_steps = gr.Slider(
|
400 |
label="number of steps (should normally be between 12 and 36)",
|
401 |
minimum=1,
|
@@ -427,28 +409,6 @@ with gr.Blocks() as demo:
|
|
427 |
type="filepath"
|
428 |
)
|
429 |
|
430 |
-
|
431 |
-
|
432 |
-
# with gr.Column():
|
433 |
-
# with gr.Accordion(label="beat unmask (how much time around the beat should be hinted?)"):
|
434 |
-
# use_beats = gr.Checkbox(
|
435 |
-
# label="use beat hints (helps the output stick to the beat structure of the input)",
|
436 |
-
# value=False
|
437 |
-
# )
|
438 |
-
|
439 |
-
# snap_to_beats = gr.Checkbox(
|
440 |
-
# label="trim to beat markers (uncheck if the output audio is too short.)",
|
441 |
-
# value=True
|
442 |
-
# )
|
443 |
-
|
444 |
-
# beat_unmask_dur = gr.Slider(
|
445 |
-
# label="duration",
|
446 |
-
# minimum=0.0,
|
447 |
-
# maximum=3.0,
|
448 |
-
# value=0.07
|
449 |
-
# )
|
450 |
-
|
451 |
-
|
452 |
notes_text = gr.Textbox(
|
453 |
label="type any notes about the generated audio here",
|
454 |
value="",
|
@@ -467,7 +427,7 @@ with gr.Blocks() as demo:
|
|
467 |
_inputs = {
|
468 |
input_audio,
|
469 |
num_steps,
|
470 |
-
|
471 |
prefix_s, suffix_s,
|
472 |
rand_mask_intensity,
|
473 |
periodic_p, periodic_w,
|
@@ -477,11 +437,9 @@ with gr.Blocks() as demo:
|
|
477 |
stretch_factor,
|
478 |
onset_mask_width,
|
479 |
input_pitch_shift,
|
480 |
-
sampling_strategy,
|
481 |
typical_filtering,
|
482 |
typical_mass,
|
483 |
typical_min_tokens,
|
484 |
-
topk,
|
485 |
checkpoint_key
|
486 |
}
|
487 |
|
|
|
68 |
"c2f": "./models/finetuned/titi/c2f.pth",
|
69 |
"codec": "./models/spotdl/codec.pth",
|
70 |
"full_ckpt": False
|
71 |
+
},
|
72 |
+
"titi-clean": {
|
73 |
+
"coarse": "./models/finetuned/titi-clean/coarse.pth",
|
74 |
+
"c2f": "./models/finetuned/titi-clean/c2f.pth",
|
75 |
+
"codec": "./models/spotdl/codec.pth",
|
76 |
+
"full_ckpt": False
|
77 |
+
},
|
78 |
+
"breaks-steps": {
|
79 |
+
"coarse": "./models/finetuned/breaks-steps/coarse.pth",
|
80 |
+
"c2f": None, #"./models/finetuned/breaks-steps/c2f.pth",
|
81 |
+
"codec": "./models/spotdl/codec.pth",
|
82 |
+
"full_ckpt": False
|
83 |
+
},
|
84 |
}
|
85 |
interface.checkpoint_key = "spotdl"
|
86 |
|
|
|
124 |
checkpoints[data[checkpoint_key]]["coarse"],
|
125 |
checkpoints[data[checkpoint_key]]["c2f"],
|
126 |
checkpoints[data[checkpoint_key]]["full_ckpt"],
|
|
|
127 |
)
|
128 |
interface.checkpoint_key = data[checkpoint_key]
|
|
|
129 |
|
130 |
out_dir = OUT_DIR / str(uuid.uuid4())
|
131 |
out_dir.mkdir()
|
|
|
164 |
mask = pmask.dropout(mask, data[dropout])
|
165 |
mask = pmask.codebook_unmask(mask, ncc)
|
166 |
|
167 |
+
print(f"created mask with: linear random {data[rand_mask_intensity]}, inpaint {data[prefix_s]}:{data[suffix_s]}, periodic {data[periodic_p]}:{data[periodic_w]}, dropout {data[dropout]}, codebook unmask {ncc}, onset mask {data[onset_mask_width]}, num steps {data[num_steps]}, init temp {data[temp]}, use coarse2fine {data[use_coarse2fine]}")
|
168 |
# save the mask as a txt file
|
169 |
np.savetxt(out_dir / "mask.txt", mask[:,0,:].long().cpu().numpy())
|
170 |
|
|
|
|
|
|
|
|
|
|
|
171 |
zv, mask_z = interface.coarse_vamp(
|
172 |
z,
|
173 |
mask=mask,
|
174 |
sampling_steps=data[num_steps],
|
175 |
+
temperature=data[temp]*10,
|
176 |
return_mask=True,
|
|
|
177 |
typical_filtering=data[typical_filtering],
|
178 |
typical_mass=data[typical_mass],
|
179 |
typical_min_tokens=data[typical_min_tokens],
|
180 |
+
gen_fn=interface.coarse.generate,
|
181 |
)
|
182 |
|
183 |
if use_coarse2fine:
|
184 |
+
zv = interface.coarse_to_fine(zv, temperature=data[temp])
|
185 |
|
186 |
sig = interface.to_signal(zv).cpu()
|
187 |
print("done")
|
|
|
214 |
sig_out.write(out_dir / "output.wav")
|
215 |
|
216 |
_data = {
|
217 |
+
"temp": data[temp],
|
|
|
218 |
"prefix_s": data[prefix_s],
|
219 |
"suffix_s": data[suffix_s],
|
220 |
"rand_mask_intensity": data[rand_mask_intensity],
|
|
|
352 |
value=0.0
|
353 |
)
|
354 |
|
355 |
+
temp = gr.Slider(
|
356 |
+
label="temperature",
|
357 |
+
minimum=0.0,
|
358 |
+
maximum=1.5,
|
359 |
+
value=0.8
|
360 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
|
362 |
with gr.Accordion("sampling settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
363 |
typical_filtering = gr.Checkbox(
|
364 |
+
label="typical filtering ",
|
365 |
value=True
|
366 |
)
|
367 |
typical_mass = gr.Slider(
|
368 |
label="typical mass (should probably stay between 0.1 and 0.5)",
|
369 |
minimum=0.01,
|
370 |
maximum=0.99,
|
371 |
+
value=0.15
|
372 |
)
|
373 |
typical_min_tokens = gr.Slider(
|
374 |
label="typical min tokens (should probably stay between 1 and 256)",
|
375 |
minimum=1,
|
376 |
maximum=256,
|
377 |
step=1,
|
378 |
+
value=64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
379 |
)
|
380 |
|
|
|
|
|
381 |
num_steps = gr.Slider(
|
382 |
label="number of steps (should normally be between 12 and 36)",
|
383 |
minimum=1,
|
|
|
409 |
type="filepath"
|
410 |
)
|
411 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
412 |
notes_text = gr.Textbox(
|
413 |
label="type any notes about the generated audio here",
|
414 |
value="",
|
|
|
427 |
_inputs = {
|
428 |
input_audio,
|
429 |
num_steps,
|
430 |
+
temp,
|
431 |
prefix_s, suffix_s,
|
432 |
rand_mask_intensity,
|
433 |
periodic_p, periodic_w,
|
|
|
437 |
stretch_factor,
|
438 |
onset_mask_width,
|
439 |
input_pitch_shift,
|
|
|
440 |
typical_filtering,
|
441 |
typical_mass,
|
442 |
typical_min_tokens,
|
|
|
443 |
checkpoint_key
|
444 |
}
|
445 |
|
scripts/exp/train.py
CHANGED
@@ -491,7 +491,7 @@ def train(
|
|
491 |
num_samples = z.shape[0]
|
492 |
|
493 |
for i in range(num_samples):
|
494 |
-
sampled = accel.unwrap(model).
|
495 |
codec=codec,
|
496 |
time_steps=z.shape[-1],
|
497 |
start_tokens=z[i : i + 1],
|
@@ -503,29 +503,6 @@ def train(
|
|
503 |
plot_fn=None,
|
504 |
)
|
505 |
|
506 |
-
# sample in 1 step (only for coarse2fine models)
|
507 |
-
if accel.unwrap(model).n_conditioning_codebooks > 0:
|
508 |
-
sampled_argmax = accel.unwrap(model).sample(
|
509 |
-
codec=codec,
|
510 |
-
time_steps=z.shape[-1],
|
511 |
-
start_tokens=z[i : i + 1],
|
512 |
-
sample="argmax",
|
513 |
-
sampling_steps=1,
|
514 |
-
)
|
515 |
-
sampled_argmax.cpu().write_audio_to_tb(
|
516 |
-
f"sampled_1step-argmax/{i}",
|
517 |
-
self.writer,
|
518 |
-
step=self.state.epoch,
|
519 |
-
plot_fn=None,
|
520 |
-
)
|
521 |
-
conditioning = z[i:i+1, : accel.unwrap(model).n_conditioning_codebooks, :]
|
522 |
-
conditioning = accel.unwrap(model).to_signal(conditioning, codec)
|
523 |
-
conditioning.cpu().write_audio_to_tb(
|
524 |
-
f"conditioning/{i}",
|
525 |
-
self.writer,
|
526 |
-
step=self.state.epoch,
|
527 |
-
plot_fn=None,
|
528 |
-
)
|
529 |
|
530 |
def save_imputation(self, z: torch.Tensor):
|
531 |
n_prefix = int(z.shape[-1] * 0.25)
|
@@ -543,7 +520,7 @@ def train(
|
|
543 |
imputed = []
|
544 |
for i in range(len(z)):
|
545 |
imputed.append(
|
546 |
-
vn.
|
547 |
codec=codec,
|
548 |
time_steps=z.shape[-1],
|
549 |
start_tokens=z[i][None, ...],
|
|
|
491 |
num_samples = z.shape[0]
|
492 |
|
493 |
for i in range(num_samples):
|
494 |
+
sampled = accel.unwrap(model).generate(
|
495 |
codec=codec,
|
496 |
time_steps=z.shape[-1],
|
497 |
start_tokens=z[i : i + 1],
|
|
|
503 |
plot_fn=None,
|
504 |
)
|
505 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
506 |
|
507 |
def save_imputation(self, z: torch.Tensor):
|
508 |
n_prefix = int(z.shape[-1] * 0.25)
|
|
|
520 |
imputed = []
|
521 |
for i in range(len(z)):
|
522 |
imputed.append(
|
523 |
+
vn.generate(
|
524 |
codec=codec,
|
525 |
time_steps=z.shape[-1],
|
526 |
start_tokens=z[i][None, ...],
|
vampnet/interface.py
CHANGED
@@ -292,7 +292,7 @@ class Interface(torch.nn.Module):
|
|
292 |
fine_z = []
|
293 |
for i in range(n_chunks):
|
294 |
chunk = coarse_z[:, :, i * chunk_len : (i + 1) * chunk_len]
|
295 |
-
chunk = self.c2f.
|
296 |
codec=self.codec,
|
297 |
time_steps=chunk_len,
|
298 |
start_tokens=chunk,
|
@@ -343,6 +343,7 @@ if __name__ == "__main__":
|
|
343 |
logger = logging.getLogger()
|
344 |
logger.setLevel(logging.INFO)
|
345 |
torch.set_printoptions(threshold=10000)
|
|
|
346 |
|
347 |
interface = Interface(
|
348 |
coarse_ckpt="./models/spotdl/coarse.pth",
|
@@ -372,20 +373,20 @@ if __name__ == "__main__":
|
|
372 |
z,
|
373 |
mask=mask,
|
374 |
sampling_steps=36,
|
375 |
-
temperature=
|
376 |
return_mask=True,
|
377 |
-
|
378 |
)
|
379 |
|
380 |
-
use_coarse2fine =
|
381 |
if use_coarse2fine:
|
382 |
-
zv = interface.coarse_to_fine(zv)
|
383 |
|
384 |
mask = interface.to_signal(mask_z).cpu()
|
385 |
|
386 |
sig = interface.to_signal(zv).cpu()
|
387 |
print("done")
|
388 |
|
389 |
-
sig.write("
|
390 |
mask.write("mask.wav")
|
391 |
|
|
|
292 |
fine_z = []
|
293 |
for i in range(n_chunks):
|
294 |
chunk = coarse_z[:, :, i * chunk_len : (i + 1) * chunk_len]
|
295 |
+
chunk = self.c2f.generate(
|
296 |
codec=self.codec,
|
297 |
time_steps=chunk_len,
|
298 |
start_tokens=chunk,
|
|
|
343 |
logger = logging.getLogger()
|
344 |
logger.setLevel(logging.INFO)
|
345 |
torch.set_printoptions(threshold=10000)
|
346 |
+
at.util.seed(42)
|
347 |
|
348 |
interface = Interface(
|
349 |
coarse_ckpt="./models/spotdl/coarse.pth",
|
|
|
373 |
z,
|
374 |
mask=mask,
|
375 |
sampling_steps=36,
|
376 |
+
temperature=8.0,
|
377 |
return_mask=True,
|
378 |
+
gen_fn=interface.coarse.generate
|
379 |
)
|
380 |
|
381 |
+
use_coarse2fine = True
|
382 |
if use_coarse2fine:
|
383 |
+
zv = interface.coarse_to_fine(zv, temperature=0.8)
|
384 |
|
385 |
mask = interface.to_signal(mask_z).cpu()
|
386 |
|
387 |
sig = interface.to_signal(zv).cpu()
|
388 |
print("done")
|
389 |
|
390 |
+
sig.write("output3.wav")
|
391 |
mask.write("mask.wav")
|
392 |
|
vampnet/modules/transformer.py
CHANGED
@@ -741,7 +741,7 @@ class VampNet(at.ml.BaseModel):
|
|
741 |
sampling_steps: int = 36,
|
742 |
start_tokens: Optional[torch.Tensor] = None,
|
743 |
mask: Optional[torch.Tensor] = None,
|
744 |
-
temperature: Union[float, Tuple[float, float]] = 0
|
745 |
typical_filtering=False,
|
746 |
typical_mass=0.2,
|
747 |
typical_min_tokens=1,
|
@@ -848,26 +848,27 @@ class VampNet(at.ml.BaseModel):
|
|
848 |
probs = torch.softmax(logits, dim=-1)
|
849 |
logging.info(f"computed probs with shape: {probs.shape}")
|
850 |
|
851 |
-
# flatten z_masked and mask, so we can deal with the sampling logic
|
852 |
-
# we'll unflatten them at the end of the loop for the next forward pass
|
853 |
-
z_masked = codebook_flatten(z_masked)
|
854 |
|
855 |
# sample from logits with multinomial sampling
|
856 |
b = probs.shape[0]
|
857 |
probs = rearrange(probs, "b seq prob -> (b seq) prob")
|
858 |
|
859 |
-
|
860 |
-
|
861 |
sampled_z = torch.multinomial(probs, 1).squeeze(-1)
|
862 |
|
863 |
sampled_z = rearrange(sampled_z, "(b seq)-> b seq", b=b)
|
864 |
probs = rearrange(probs, "(b seq) prob -> b seq prob", b=b)
|
865 |
logging.info(f"sampled z with shape: {sampled_z.shape}")
|
866 |
|
867 |
-
|
|
|
|
|
|
|
|
|
|
|
868 |
mask = (z_masked == self.mask_token).int()
|
|
|
|
|
869 |
logging.info(f"updated mask with shape: {mask.shape}")
|
870 |
-
|
871 |
# add z back into sampled z where the mask was false
|
872 |
sampled_z = torch.where(
|
873 |
mask.bool(), sampled_z, z_masked
|
@@ -902,17 +903,9 @@ class VampNet(at.ml.BaseModel):
|
|
902 |
|
903 |
|
904 |
# get our new mask
|
905 |
-
# print(tmpt * (1-_gamma(r)))
|
906 |
mask = mask_by_random_topk(
|
907 |
num_to_mask, selected_probs, tmpt * (1-r)
|
908 |
-
)
|
909 |
-
|
910 |
-
# print(f"most confident tokens: ")
|
911 |
-
# print(torch.take_along_dim(
|
912 |
-
# sampled_z, selected_probs.argsort(descending=False), dim=-1)
|
913 |
-
# )
|
914 |
-
# print(sampled_z[~mask.bool()])
|
915 |
-
|
916 |
|
917 |
# update the mask
|
918 |
z_masked = torch.where(
|
@@ -920,22 +913,29 @@ class VampNet(at.ml.BaseModel):
|
|
920 |
)
|
921 |
logging.info(f"updated z_masked with shape: {z_masked.shape}")
|
922 |
|
923 |
-
|
924 |
-
|
925 |
-
mask = codebook_unflatten(mask, self.n_codebooks)
|
926 |
logging.info(f"unflattened z_masked with shape: {z_masked.shape}")
|
927 |
|
|
|
|
|
|
|
|
|
|
|
928 |
|
929 |
-
logging.info(f"updated z_masked with shape: {z_masked.shape}")
|
930 |
|
|
|
|
|
|
|
|
|
|
|
931 |
|
932 |
logging.info(f"finished sampling")
|
933 |
-
z = codebook_unflatten(sampled_z, self.n_codebooks)
|
934 |
|
935 |
if return_signal:
|
936 |
-
return self.to_signal(
|
937 |
else:
|
938 |
-
return
|
939 |
|
940 |
|
941 |
def mask_by_random_topk(num_to_mask: int, probs: torch.Tensor, temperature: float = 1.0):
|
|
|
741 |
sampling_steps: int = 36,
|
742 |
start_tokens: Optional[torch.Tensor] = None,
|
743 |
mask: Optional[torch.Tensor] = None,
|
744 |
+
temperature: Union[float, Tuple[float, float]] = 8.0,
|
745 |
typical_filtering=False,
|
746 |
typical_mass=0.2,
|
747 |
typical_min_tokens=1,
|
|
|
848 |
probs = torch.softmax(logits, dim=-1)
|
849 |
logging.info(f"computed probs with shape: {probs.shape}")
|
850 |
|
|
|
|
|
|
|
851 |
|
852 |
# sample from logits with multinomial sampling
|
853 |
b = probs.shape[0]
|
854 |
probs = rearrange(probs, "b seq prob -> (b seq) prob")
|
855 |
|
|
|
|
|
856 |
sampled_z = torch.multinomial(probs, 1).squeeze(-1)
|
857 |
|
858 |
sampled_z = rearrange(sampled_z, "(b seq)-> b seq", b=b)
|
859 |
probs = rearrange(probs, "(b seq) prob -> b seq prob", b=b)
|
860 |
logging.info(f"sampled z with shape: {sampled_z.shape}")
|
861 |
|
862 |
+
|
863 |
+
# flatten z_masked and mask, so we can deal with the sampling logic
|
864 |
+
# we'll unflatten them at the end of the loop for the next forward pass
|
865 |
+
# remove conditioning codebooks, we'll add them back at the end
|
866 |
+
z_masked = codebook_flatten(z_masked[:, self.n_conditioning_codebooks:, :])
|
867 |
+
|
868 |
mask = (z_masked == self.mask_token).int()
|
869 |
+
|
870 |
+
# update the mask, remove conditioning codebooks from the mask
|
871 |
logging.info(f"updated mask with shape: {mask.shape}")
|
|
|
872 |
# add z back into sampled z where the mask was false
|
873 |
sampled_z = torch.where(
|
874 |
mask.bool(), sampled_z, z_masked
|
|
|
903 |
|
904 |
|
905 |
# get our new mask
|
|
|
906 |
mask = mask_by_random_topk(
|
907 |
num_to_mask, selected_probs, tmpt * (1-r)
|
908 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
909 |
|
910 |
# update the mask
|
911 |
z_masked = torch.where(
|
|
|
913 |
)
|
914 |
logging.info(f"updated z_masked with shape: {z_masked.shape}")
|
915 |
|
916 |
+
z_masked = codebook_unflatten(z_masked, n_infer_codebooks)
|
917 |
+
mask = codebook_unflatten(mask, n_infer_codebooks)
|
|
|
918 |
logging.info(f"unflattened z_masked with shape: {z_masked.shape}")
|
919 |
|
920 |
+
# add conditioning codebooks back to z_masked
|
921 |
+
z_masked = torch.cat(
|
922 |
+
(z[:, :self.n_conditioning_codebooks, :], z_masked), dim=1
|
923 |
+
)
|
924 |
+
logging.info(f"added conditioning codebooks back to z_masked with shape: {z_masked.shape}")
|
925 |
|
|
|
926 |
|
927 |
+
# add conditioning codebooks back to sampled_z
|
928 |
+
sampled_z = codebook_unflatten(sampled_z, n_infer_codebooks)
|
929 |
+
sampled_z = torch.cat(
|
930 |
+
(z[:, :self.n_conditioning_codebooks, :], sampled_z), dim=1
|
931 |
+
)
|
932 |
|
933 |
logging.info(f"finished sampling")
|
|
|
934 |
|
935 |
if return_signal:
|
936 |
+
return self.to_signal(sampled_z, codec)
|
937 |
else:
|
938 |
+
return sampled_z
|
939 |
|
940 |
|
941 |
def mask_by_random_topk(num_to_mask: int, probs: torch.Tensor, temperature: float = 1.0):
|