Spaces:
Running
on
T4
Running
on
T4
Merge branch 'main' of https://github.com/descriptinc/lyrebird-vampnet into main
Browse files- requirements.txt +1 -0
- vampnet/beats.py +249 -0
- vampnet/interface.py +99 -7
- vampnet/modules/base.py +6 -5
requirements.txt
CHANGED
@@ -3,6 +3,7 @@ pytorch-ignite
|
|
3 |
rich
|
4 |
audiotools @ git+https://github.com/descriptinc/lyrebird-audiotools.git@hf/backup-info
|
5 |
lac @ git+https://github.com/descriptinc/lyrebird-audio-codec.git@hf/vampnet-temp
|
|
|
6 |
tqdm
|
7 |
tensorboard
|
8 |
google-cloud-logging==2.2.0
|
|
|
3 |
rich
|
4 |
audiotools @ git+https://github.com/descriptinc/lyrebird-audiotools.git@hf/backup-info
|
5 |
lac @ git+https://github.com/descriptinc/lyrebird-audio-codec.git@hf/vampnet-temp
|
6 |
+
wavebeat @ git+https://github.com/hugofloresgarcia/wavebeat.git
|
7 |
tqdm
|
8 |
tensorboard
|
9 |
google-cloud-logging==2.2.0
|
vampnet/beats.py
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import warnings
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import Any
|
7 |
+
from typing import List
|
8 |
+
from typing import Tuple
|
9 |
+
from typing import Union
|
10 |
+
|
11 |
+
import librosa
|
12 |
+
import numpy as np
|
13 |
+
from audiotools import AudioSignal
|
14 |
+
|
15 |
+
|
16 |
+
logging.basicConfig(level=logging.INFO)
|
17 |
+
|
18 |
+
###################
|
19 |
+
# beat sync utils #
|
20 |
+
###################
|
21 |
+
|
22 |
+
AGGREGATOR_REGISTRY = {
|
23 |
+
"mean": np.mean,
|
24 |
+
"median": np.median,
|
25 |
+
"max": np.max,
|
26 |
+
"min": np.min,
|
27 |
+
}
|
28 |
+
|
29 |
+
|
30 |
+
def list_aggregators() -> list:
|
31 |
+
return list(AGGREGATOR_REGISTRY.keys())
|
32 |
+
|
33 |
+
|
34 |
+
@dataclass
|
35 |
+
class TimeSegment:
|
36 |
+
start: float
|
37 |
+
end: float
|
38 |
+
|
39 |
+
@property
|
40 |
+
def duration(self):
|
41 |
+
return self.end - self.start
|
42 |
+
|
43 |
+
def __str__(self) -> str:
|
44 |
+
return f"{self.start} - {self.end}"
|
45 |
+
|
46 |
+
def find_overlapping_segment(
|
47 |
+
self, segments: List["TimeSegment"]
|
48 |
+
) -> Union["TimeSegment", None]:
|
49 |
+
"""Find the first segment that overlaps with this segment, or None if no segment overlaps"""
|
50 |
+
for s in segments:
|
51 |
+
if s.start <= self.start and s.end >= self.end:
|
52 |
+
return s
|
53 |
+
return None
|
54 |
+
|
55 |
+
|
56 |
+
def mkdir(path: Union[Path, str]) -> Path:
|
57 |
+
p = Path(path)
|
58 |
+
p.mkdir(parents=True, exist_ok=True)
|
59 |
+
return p
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
###################
|
64 |
+
# beat data #
|
65 |
+
###################
|
66 |
+
@dataclass
|
67 |
+
class BeatSegment(TimeSegment):
|
68 |
+
downbeat: bool = False # if there's a downbeat on the start_time
|
69 |
+
|
70 |
+
|
71 |
+
class Beats:
|
72 |
+
def __init__(self, beat_times, downbeat_times):
|
73 |
+
if isinstance(beat_times, np.ndarray):
|
74 |
+
beat_times = beat_times.tolist()
|
75 |
+
if isinstance(downbeat_times, np.ndarray):
|
76 |
+
downbeat_times = downbeat_times.tolist()
|
77 |
+
self._beat_times = beat_times
|
78 |
+
self._downbeat_times = downbeat_times
|
79 |
+
self._use_downbeats = False
|
80 |
+
|
81 |
+
def use_downbeats(self, use_downbeats: bool = True):
|
82 |
+
"""use downbeats instead of beats when calling beat_times"""
|
83 |
+
self._use_downbeats = use_downbeats
|
84 |
+
|
85 |
+
def beat_segments(self, signal: AudioSignal) -> List[BeatSegment]:
|
86 |
+
"""
|
87 |
+
segments a song into time segments corresponding to beats.
|
88 |
+
the first segment starts at 0 and ends at the first beat time.
|
89 |
+
the last segment starts at the last beat time and ends at the end of the song.
|
90 |
+
"""
|
91 |
+
beat_times = self._beat_times.copy()
|
92 |
+
downbeat_times = self._downbeat_times
|
93 |
+
beat_times.insert(0, 0)
|
94 |
+
beat_times.append(signal.signal_duration)
|
95 |
+
|
96 |
+
downbeat_ids = np.intersect1d(beat_times, downbeat_times, return_indices=True)[
|
97 |
+
1
|
98 |
+
]
|
99 |
+
is_downbeat = [
|
100 |
+
True if i in downbeat_ids else False for i in range(len(beat_times))
|
101 |
+
]
|
102 |
+
segments = [
|
103 |
+
BeatSegment(start_time, end_time, downbeat)
|
104 |
+
for start_time, end_time, downbeat in zip(
|
105 |
+
beat_times[:-1], beat_times[1:], is_downbeat
|
106 |
+
)
|
107 |
+
]
|
108 |
+
return segments
|
109 |
+
|
110 |
+
def get_beats(self) -> np.ndarray:
|
111 |
+
"""returns an array of beat times, in seconds
|
112 |
+
if downbeats is True, returns an array of downbeat times, in seconds
|
113 |
+
"""
|
114 |
+
return np.array(
|
115 |
+
self._downbeat_times if self._use_downbeats else self._beat_times
|
116 |
+
)
|
117 |
+
|
118 |
+
@property
|
119 |
+
def beat_times(self) -> np.ndarray:
|
120 |
+
"""return beat times"""
|
121 |
+
return np.array(self._beat_times)
|
122 |
+
|
123 |
+
@property
|
124 |
+
def downbeat_times(self) -> np.ndarray:
|
125 |
+
"""return downbeat times"""
|
126 |
+
return np.array(self._downbeat_times)
|
127 |
+
|
128 |
+
def beat_times_to_feature_frames(
|
129 |
+
self, signal: AudioSignal, features: np.ndarray
|
130 |
+
) -> np.ndarray:
|
131 |
+
"""convert beat times to frames, given an array of time-varying features"""
|
132 |
+
beat_times = self.get_beats()
|
133 |
+
beat_frames = (
|
134 |
+
beat_times * signal.sample_rate / signal.signal_length * features.shape[-1]
|
135 |
+
).astype(np.int64)
|
136 |
+
return beat_frames
|
137 |
+
|
138 |
+
def sync_features(
|
139 |
+
self, feature_frames: np.ndarray, features: np.ndarray, aggregate="median"
|
140 |
+
) -> np.ndarray:
|
141 |
+
"""sync features to beats"""
|
142 |
+
if aggregate not in AGGREGATOR_REGISTRY:
|
143 |
+
raise ValueError(f"unknown aggregation method {aggregate}")
|
144 |
+
|
145 |
+
return librosa.util.sync(
|
146 |
+
features, feature_frames, aggregate=AGGREGATOR_REGISTRY[aggregate]
|
147 |
+
)
|
148 |
+
|
149 |
+
def to_json(self) -> dict:
|
150 |
+
"""return beats and downbeats as json"""
|
151 |
+
return {
|
152 |
+
"beats": self._beat_times,
|
153 |
+
"downbeats": self._downbeat_times,
|
154 |
+
"use_downbeats": self._use_downbeats,
|
155 |
+
}
|
156 |
+
|
157 |
+
@classmethod
|
158 |
+
def from_dict(cls, data: dict):
|
159 |
+
"""load beats and downbeats from json"""
|
160 |
+
inst = cls(data["beats"], data["downbeats"])
|
161 |
+
inst.use_downbeats(data["use_downbeats"])
|
162 |
+
return inst
|
163 |
+
|
164 |
+
def save(self, output_dir: Path):
|
165 |
+
"""save beats and downbeats to json"""
|
166 |
+
mkdir(output_dir)
|
167 |
+
with open(output_dir / "beats.json", "w") as f:
|
168 |
+
json.dump(self.to_json(), f)
|
169 |
+
|
170 |
+
@classmethod
|
171 |
+
def load(cls, input_dir: Path):
|
172 |
+
"""load beats and downbeats from json"""
|
173 |
+
beats_file = Path(input_dir) / "beats.json"
|
174 |
+
with open(beats_file, "r") as f:
|
175 |
+
data = json.load(f)
|
176 |
+
return cls.from_dict(data)
|
177 |
+
|
178 |
+
|
179 |
+
###################
|
180 |
+
# beat tracking #
|
181 |
+
###################
|
182 |
+
|
183 |
+
|
184 |
+
class BeatTracker:
|
185 |
+
def extract_beats(self, signal: AudioSignal) -> Tuple[np.ndarray, np.ndarray]:
|
186 |
+
"""extract beats from an audio signal"""
|
187 |
+
raise NotImplementedError
|
188 |
+
|
189 |
+
def __call__(self, signal: AudioSignal) -> Beats:
|
190 |
+
"""extract beats from an audio signal
|
191 |
+
NOTE: if the first beat (and/or downbeat) is detected within the first 100ms of the audio,
|
192 |
+
it is discarded. This is to avoid empty bins with no beat synced features in the first beat.
|
193 |
+
Args:
|
194 |
+
signal (AudioSignal): signal to beat track
|
195 |
+
Returns:
|
196 |
+
Tuple[np.ndarray, np.ndarray]: beats and downbeats
|
197 |
+
"""
|
198 |
+
beats, downbeats = self.extract_beats(signal)
|
199 |
+
return Beats(beats, downbeats)
|
200 |
+
|
201 |
+
|
202 |
+
class WaveBeat(BeatTracker):
|
203 |
+
def __init__(self, ckpt_path: str = "checkpoints/wavebeat", device: str = "cpu"):
|
204 |
+
from wavebeat.dstcn import dsTCNModel
|
205 |
+
|
206 |
+
model = dsTCNModel.load_from_checkpoint(ckpt_path)
|
207 |
+
model.eval()
|
208 |
+
|
209 |
+
self.device = device
|
210 |
+
self.model = model
|
211 |
+
|
212 |
+
def extract_beats(self, signal: AudioSignal) -> Tuple[np.ndarray, np.ndarray]:
|
213 |
+
"""returns beat and downbeat times, in seconds"""
|
214 |
+
# extract beats
|
215 |
+
beats, downbeats = self.model.predict_beats_from_array(
|
216 |
+
audio=signal.audio_data.squeeze(0),
|
217 |
+
sr=signal.sample_rate,
|
218 |
+
use_gpu=self.device is not "cpu",
|
219 |
+
)
|
220 |
+
|
221 |
+
return beats, downbeats
|
222 |
+
|
223 |
+
|
224 |
+
class MadmomBeats(BeatTracker):
|
225 |
+
def __init__(self):
|
226 |
+
raise NotImplementedError
|
227 |
+
|
228 |
+
def extract_beats(self, signal: AudioSignal) -> Tuple[np.ndarray, np.ndarray]:
|
229 |
+
"""returns beat and downbeat times, in seconds"""
|
230 |
+
pass
|
231 |
+
|
232 |
+
|
233 |
+
BEAT_TRACKER_REGISTRY = {
|
234 |
+
"wavebeat": WaveBeat,
|
235 |
+
"madmom": MadmomBeats,
|
236 |
+
}
|
237 |
+
|
238 |
+
|
239 |
+
def list_beat_trackers() -> list:
|
240 |
+
return list(BEAT_TRACKER_REGISTRY.keys())
|
241 |
+
|
242 |
+
|
243 |
+
def load_beat_tracker(beat_tracker: str, **kwargs) -> BeatTracker:
|
244 |
+
if beat_tracker not in BEAT_TRACKER_REGISTRY:
|
245 |
+
raise ValueError(
|
246 |
+
f"Unknown beat tracker {beat_tracker}. Available: {list_beat_trackers()}"
|
247 |
+
)
|
248 |
+
|
249 |
+
return BEAT_TRACKER_REGISTRY[beat_tracker](**kwargs)
|
vampnet/interface.py
CHANGED
@@ -3,14 +3,15 @@ from pathlib import Path
|
|
3 |
import math
|
4 |
|
5 |
import torch
|
|
|
6 |
from audiotools import AudioSignal
|
7 |
import tqdm
|
8 |
|
9 |
from .modules.transformer import VampNet
|
|
|
10 |
from lac.model.lac import LAC
|
11 |
|
12 |
|
13 |
-
|
14 |
def signal_concat(
|
15 |
audio_signals: list,
|
16 |
):
|
@@ -50,7 +51,10 @@ class Interface:
|
|
50 |
|
51 |
def s2t(self, seconds: float):
|
52 |
"""seconds to tokens"""
|
53 |
-
|
|
|
|
|
|
|
54 |
|
55 |
def s2t2s(self, seconds: float):
|
56 |
"""seconds to tokens to seconds"""
|
@@ -83,12 +87,85 @@ class Interface:
|
|
83 |
.ensure_max_of_audio(1.0)
|
84 |
)
|
85 |
return signal
|
|
|
86 |
@torch.inference_mode()
|
87 |
def encode(self, signal: AudioSignal):
|
88 |
signal = self.preprocess(signal).to(self.device)
|
89 |
z = self.codec.encode(signal.samples, signal.sample_rate)["codes"]
|
90 |
return z
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
def coarse_to_fine(
|
93 |
self,
|
94 |
coarse_z: torch.Tensor,
|
@@ -231,7 +308,9 @@ class Interface:
|
|
231 |
downsample_factor: int = None,
|
232 |
intensity: float = 1.0,
|
233 |
debug=False,
|
234 |
-
swap_prefix_suffix=False,
|
|
|
|
|
235 |
**kwargs
|
236 |
):
|
237 |
z = self.encode(signal)
|
@@ -258,14 +337,16 @@ class Interface:
|
|
258 |
|
259 |
_cz = cz.clone()
|
260 |
cz_mask = None
|
261 |
-
|
|
|
262 |
# add noise
|
263 |
cz_masked, cz_mask = self.coarse.add_noise(
|
264 |
_cz, r=1.0-intensity,
|
265 |
n_prefix=n_prefix,
|
266 |
n_suffix=n_suffix,
|
267 |
downsample_factor=downsample_factor,
|
268 |
-
mask=cz_mask
|
|
|
269 |
)
|
270 |
if debug:
|
271 |
print("tokens to infer")
|
@@ -366,8 +447,9 @@ class Interface:
|
|
366 |
def variation(
|
367 |
self,
|
368 |
signal: AudioSignal,
|
369 |
-
overlap_hop_ratio: float = 1.0, # TODO: should this be fixed to 1.0? or should we overlap and replace instead of overlap add
|
370 |
verbose: bool = False,
|
|
|
|
|
371 |
**kwargs
|
372 |
):
|
373 |
signal = signal.clone()
|
@@ -380,6 +462,9 @@ class Interface:
|
|
380 |
math.ceil(signal.duration / self.coarse.chunk_size_s)
|
381 |
* self.coarse.chunk_size_s
|
382 |
)
|
|
|
|
|
|
|
383 |
hop_duration = self.coarse.chunk_size_s * overlap_hop_ratio
|
384 |
original_length = signal.length
|
385 |
|
@@ -398,10 +483,18 @@ class Interface:
|
|
398 |
signal.samples[i,...], signal.sample_rate
|
399 |
)
|
400 |
sig.to(self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
401 |
out_z = self.coarse_vamp_v2(
|
402 |
sig,
|
403 |
num_vamps=1,
|
404 |
swap_prefix_suffix=False,
|
|
|
|
|
405 |
**kwargs
|
406 |
)
|
407 |
if self.c2f is not None:
|
@@ -415,7 +508,6 @@ class Interface:
|
|
415 |
output.truncate_samples(original_length)
|
416 |
return output
|
417 |
|
418 |
-
|
419 |
# create a loop of a single region with variations
|
420 |
# TODO: this would work nicer if we could trim at the beat
|
421 |
# otherwise the model has to awkwardly fill up space that won't match
|
|
|
3 |
import math
|
4 |
|
5 |
import torch
|
6 |
+
import numpy as np
|
7 |
from audiotools import AudioSignal
|
8 |
import tqdm
|
9 |
|
10 |
from .modules.transformer import VampNet
|
11 |
+
from .beats import WaveBeat
|
12 |
from lac.model.lac import LAC
|
13 |
|
14 |
|
|
|
15 |
def signal_concat(
|
16 |
audio_signals: list,
|
17 |
):
|
|
|
51 |
|
52 |
def s2t(self, seconds: float):
|
53 |
"""seconds to tokens"""
|
54 |
+
if isinstance(seconds, np.ndarray):
|
55 |
+
return np.ceil(seconds * self.codec.sample_rate / self.codec.hop_length)
|
56 |
+
else:
|
57 |
+
return math.ceil(seconds * self.codec.sample_rate / self.codec.hop_length)
|
58 |
|
59 |
def s2t2s(self, seconds: float):
|
60 |
"""seconds to tokens to seconds"""
|
|
|
87 |
.ensure_max_of_audio(1.0)
|
88 |
)
|
89 |
return signal
|
90 |
+
|
91 |
@torch.inference_mode()
|
92 |
def encode(self, signal: AudioSignal):
|
93 |
signal = self.preprocess(signal).to(self.device)
|
94 |
z = self.codec.encode(signal.samples, signal.sample_rate)["codes"]
|
95 |
return z
|
96 |
|
97 |
+
def make_beat_mask(self,
|
98 |
+
signal: AudioSignal,
|
99 |
+
before_beat_s: float = 0.1,
|
100 |
+
after_beat_s: float = 0.1,
|
101 |
+
mask_downbeats: bool = True,
|
102 |
+
mask_upbeats: bool = True,
|
103 |
+
downbeat_downsample_factor: int = None,
|
104 |
+
beat_downsample_factor: int = None,
|
105 |
+
dropout: float = 0.7,
|
106 |
+
invert: bool = True,
|
107 |
+
):
|
108 |
+
"""make a beat synced mask. that is, make a mask that
|
109 |
+
places 1s at and around the beat, and 0s everywhere else.
|
110 |
+
"""
|
111 |
+
assert hasattr(self, "beat_tracker"), "No beat tracker loaded"
|
112 |
+
|
113 |
+
# get the beat times
|
114 |
+
beats, downbeats = self.beat_tracker.extract_beats(signal)
|
115 |
+
|
116 |
+
# get the beat indices in z
|
117 |
+
beats_z, downbeats_z = self.s2t(beats), self.s2t(downbeats)
|
118 |
+
|
119 |
+
# remove downbeats from beats
|
120 |
+
beats_z = torch.tensor(beats_z)[~torch.isin(torch.tensor(beats_z), torch.tensor(downbeats_z))]
|
121 |
+
beats_z = beats_z.tolist()
|
122 |
+
downbeats_z = downbeats_z.tolist()
|
123 |
+
|
124 |
+
# make the mask
|
125 |
+
seq_len = self.s2t(signal.duration)
|
126 |
+
mask = torch.zeros(seq_len, device=self.device)
|
127 |
+
|
128 |
+
mask_b4 = self.s2t(before_beat_s)
|
129 |
+
mask_after = self.s2t(after_beat_s)
|
130 |
+
|
131 |
+
if beat_downsample_factor is not None:
|
132 |
+
if beat_downsample_factor < 1:
|
133 |
+
raise ValueError("mask_beat_downsample_factor must be >= 1 or None")
|
134 |
+
else:
|
135 |
+
beat_downsample_factor = 1
|
136 |
+
|
137 |
+
if downbeat_downsample_factor is not None:
|
138 |
+
if downbeat_downsample_factor < 1:
|
139 |
+
raise ValueError("mask_beat_downsample_factor must be >= 1 or None")
|
140 |
+
else:
|
141 |
+
downbeat_downsample_factor = 1
|
142 |
+
|
143 |
+
beats_z = beats_z[::beat_downsample_factor]
|
144 |
+
downbeats_z = downbeats_z[::downbeat_downsample_factor]
|
145 |
+
|
146 |
+
if mask_upbeats:
|
147 |
+
for beat_idx in beats_z:
|
148 |
+
_slice = int(beat_idx - mask_b4), int(beat_idx + mask_after)
|
149 |
+
num_steps = mask[_slice[0]:_slice[1]].shape[0]
|
150 |
+
_m = torch.ones(num_steps, device=self.device)
|
151 |
+
_m = torch.nn.functional.dropout(_m, p=dropout)
|
152 |
+
|
153 |
+
mask[_slice[0]:_slice[1]] = _m
|
154 |
+
|
155 |
+
if mask_downbeats:
|
156 |
+
for downbeat_idx in downbeats_z:
|
157 |
+
_slice = int(downbeat_idx - mask_b4), int(downbeat_idx + mask_after)
|
158 |
+
num_steps = mask[_slice[0]:_slice[1]].shape[0]
|
159 |
+
_m = torch.ones(num_steps, device=self.device)
|
160 |
+
_m = torch.nn.functional.dropout(_m, p=dropout)
|
161 |
+
|
162 |
+
mask[_slice[0]:_slice[1]] = _m
|
163 |
+
|
164 |
+
if invert:
|
165 |
+
mask = 1 - mask
|
166 |
+
|
167 |
+
return mask[None, None, :].bool().long()
|
168 |
+
|
169 |
def coarse_to_fine(
|
170 |
self,
|
171 |
coarse_z: torch.Tensor,
|
|
|
308 |
downsample_factor: int = None,
|
309 |
intensity: float = 1.0,
|
310 |
debug=False,
|
311 |
+
swap_prefix_suffix=False,
|
312 |
+
ext_mask=None,
|
313 |
+
verbose=False,
|
314 |
**kwargs
|
315 |
):
|
316 |
z = self.encode(signal)
|
|
|
337 |
|
338 |
_cz = cz.clone()
|
339 |
cz_mask = None
|
340 |
+
range_fn = tqdm.trange if verbose else range
|
341 |
+
for _ in range_fn(num_vamps):
|
342 |
# add noise
|
343 |
cz_masked, cz_mask = self.coarse.add_noise(
|
344 |
_cz, r=1.0-intensity,
|
345 |
n_prefix=n_prefix,
|
346 |
n_suffix=n_suffix,
|
347 |
downsample_factor=downsample_factor,
|
348 |
+
mask=cz_mask,
|
349 |
+
ext_mask=ext_mask
|
350 |
)
|
351 |
if debug:
|
352 |
print("tokens to infer")
|
|
|
447 |
def variation(
|
448 |
self,
|
449 |
signal: AudioSignal,
|
|
|
450 |
verbose: bool = False,
|
451 |
+
beat_mask: bool = False,
|
452 |
+
beat_mask_kwargs: dict = {},
|
453 |
**kwargs
|
454 |
):
|
455 |
signal = signal.clone()
|
|
|
462 |
math.ceil(signal.duration / self.coarse.chunk_size_s)
|
463 |
* self.coarse.chunk_size_s
|
464 |
)
|
465 |
+
# eventually we DO want overlap, but we want overlap-replace not
|
466 |
+
# overlap-add
|
467 |
+
overlap_hop_ratio = 1.0
|
468 |
hop_duration = self.coarse.chunk_size_s * overlap_hop_ratio
|
469 |
original_length = signal.length
|
470 |
|
|
|
483 |
signal.samples[i,...], signal.sample_rate
|
484 |
)
|
485 |
sig.to(self.device)
|
486 |
+
|
487 |
+
if beat_mask:
|
488 |
+
ext_mask = self.make_beat_mask(sig, **beat_mask_kwargs)
|
489 |
+
else:
|
490 |
+
ext_mask = None
|
491 |
+
|
492 |
out_z = self.coarse_vamp_v2(
|
493 |
sig,
|
494 |
num_vamps=1,
|
495 |
swap_prefix_suffix=False,
|
496 |
+
ext_mask=ext_mask,
|
497 |
+
verbose=verbose,
|
498 |
**kwargs
|
499 |
)
|
500 |
if self.c2f is not None:
|
|
|
508 |
output.truncate_samples(original_length)
|
509 |
return output
|
510 |
|
|
|
511 |
# create a loop of a single region with variations
|
512 |
# TODO: this would work nicer if we could trim at the beat
|
513 |
# otherwise the model has to awkwardly fill up space that won't match
|
vampnet/modules/base.py
CHANGED
@@ -31,17 +31,13 @@ class VampBase(at.ml.BaseModel):
|
|
31 |
def forward(self, x: torch.Tensor, r: torch.Tensor):
|
32 |
raise NotImplementedError
|
33 |
|
34 |
-
# TODO: add a beat tracking method
|
35 |
-
# that uses a beat tracking model to find beat positions
|
36 |
-
# and then unmask the codes in those poisitions (with some width)
|
37 |
-
# and drop them out with some randomness
|
38 |
-
# and have the option to DONT drop out downbeats for
|
39 |
def add_noise(
|
40 |
self,
|
41 |
x: torch.Tensor,
|
42 |
r: torch.Tensor,
|
43 |
random_x: Optional[torch.Tensor] = None,
|
44 |
mask: Optional[torch.Tensor] = None,
|
|
|
45 |
n_prefix: Optional[torch.Tensor] = None,
|
46 |
n_suffix: Optional[torch.Tensor] = None,
|
47 |
downsample_factor: Optional[int] = None,
|
@@ -99,6 +95,11 @@ class VampBase(at.ml.BaseModel):
|
|
99 |
else:
|
100 |
raise ValueError(f"invalid noise mode {self.noise_mode}")
|
101 |
|
|
|
|
|
|
|
|
|
|
|
102 |
x = x * (1 - mask) + random_x * mask
|
103 |
return x, mask
|
104 |
|
|
|
31 |
def forward(self, x: torch.Tensor, r: torch.Tensor):
|
32 |
raise NotImplementedError
|
33 |
|
|
|
|
|
|
|
|
|
|
|
34 |
def add_noise(
|
35 |
self,
|
36 |
x: torch.Tensor,
|
37 |
r: torch.Tensor,
|
38 |
random_x: Optional[torch.Tensor] = None,
|
39 |
mask: Optional[torch.Tensor] = None,
|
40 |
+
ext_mask: Optional[torch.Tensor] = None,
|
41 |
n_prefix: Optional[torch.Tensor] = None,
|
42 |
n_suffix: Optional[torch.Tensor] = None,
|
43 |
downsample_factor: Optional[int] = None,
|
|
|
95 |
else:
|
96 |
raise ValueError(f"invalid noise mode {self.noise_mode}")
|
97 |
|
98 |
+
# add the external mask if we were given one
|
99 |
+
if ext_mask is not None:
|
100 |
+
assert ext_mask.ndim == 3, "mask must be (batch, n_codebooks, seq)"
|
101 |
+
mask = (mask * ext_mask).bool().long()
|
102 |
+
|
103 |
x = x * (1 - mask) + random_x * mask
|
104 |
return x, mask
|
105 |
|