Spaces:
Running
on
T4
Running
on
T4
Hugo Flores
commited on
Commit
•
cc3a37b
1
Parent(s):
260b46d
rm old eval script
Browse files- scripts/exp/eval.py +0 -124
scripts/exp/eval.py
DELETED
@@ -1,124 +0,0 @@
|
|
1 |
-
import glob
|
2 |
-
import imp
|
3 |
-
import os
|
4 |
-
from pathlib import Path
|
5 |
-
|
6 |
-
import argbind
|
7 |
-
import audiotools
|
8 |
-
import numpy as np
|
9 |
-
import pandas as pd
|
10 |
-
import torch
|
11 |
-
from flatten_dict import flatten
|
12 |
-
from rich.progress import track
|
13 |
-
from torch.utils.tensorboard import SummaryWriter
|
14 |
-
|
15 |
-
import wav2wav
|
16 |
-
|
17 |
-
train = imp.load_source("train", str(Path(__file__).absolute().parent / "train.py"))
|
18 |
-
|
19 |
-
|
20 |
-
@argbind.bind(without_prefix=True)
|
21 |
-
def evaluate(
|
22 |
-
args,
|
23 |
-
model_tag: str = "ckpt/best",
|
24 |
-
device: str = "cuda",
|
25 |
-
exp: str = None,
|
26 |
-
overwrite: bool = False,
|
27 |
-
):
|
28 |
-
assert exp is not None
|
29 |
-
|
30 |
-
sisdr_loss = audiotools.metrics.distance.SISDRLoss()
|
31 |
-
stft_loss = audiotools.metrics.spectral.MultiScaleSTFTLoss()
|
32 |
-
mel_loss = audiotools.metrics.spectral.MelSpectrogramLoss()
|
33 |
-
|
34 |
-
with audiotools.util.chdir(exp):
|
35 |
-
vampnet = wav2wav.modules.vampnet.transformer.VampNet.load(
|
36 |
-
f"{model_tag}/vampnet/package.pth"
|
37 |
-
)
|
38 |
-
vampnet = vampnet.to(device)
|
39 |
-
if vampnet.cond_dim > 0:
|
40 |
-
condnet = wav2wav.modules.condnet.transformer.CondNet.load(
|
41 |
-
f"{model_tag}/condnet/package.pth"
|
42 |
-
)
|
43 |
-
condnet = condnet.to(device)
|
44 |
-
else:
|
45 |
-
condnet = None
|
46 |
-
|
47 |
-
vqvae = wav2wav.modules.generator.Generator.load(
|
48 |
-
f"{model_tag}/vqvae/package.pth"
|
49 |
-
)
|
50 |
-
|
51 |
-
_, _, test_data = train.build_datasets(args, vqvae.sample_rate)
|
52 |
-
|
53 |
-
with audiotools.util.chdir(exp):
|
54 |
-
datasets = {
|
55 |
-
"test": test_data,
|
56 |
-
}
|
57 |
-
|
58 |
-
metrics_path = Path(f"{model_tag}/metrics")
|
59 |
-
metrics_path.mkdir(parents=True, exist_ok=True)
|
60 |
-
|
61 |
-
for key, dataset in datasets.items():
|
62 |
-
csv_path = metrics_path / f"{key}.csv"
|
63 |
-
if csv_path.exists() and not overwrite:
|
64 |
-
break
|
65 |
-
metrics = []
|
66 |
-
for i in track(range(len(dataset))):
|
67 |
-
# TODO: for coarse2fine
|
68 |
-
# grab the signal
|
69 |
-
# mask all the codebooks except the conditioning ones
|
70 |
-
# and infer
|
71 |
-
# then compute metrics
|
72 |
-
# for a baseline, just use the coarsest codebook
|
73 |
-
|
74 |
-
try:
|
75 |
-
visqol = audiotools.metrics.quality.visqol(
|
76 |
-
enhanced, clean, "audio"
|
77 |
-
).item()
|
78 |
-
except:
|
79 |
-
visqol = None
|
80 |
-
|
81 |
-
sisdr = sisdr_loss(enhanced, clean)
|
82 |
-
stft = stft_loss(enhanced, clean)
|
83 |
-
mel = mel_loss(enhanced, clean)
|
84 |
-
|
85 |
-
metrics.append(
|
86 |
-
{
|
87 |
-
"visqol": visqol,
|
88 |
-
"sisdr": sisdr.item(),
|
89 |
-
"stft": stft.item(),
|
90 |
-
"mel": mel.item(),
|
91 |
-
"dataset": key,
|
92 |
-
"condition": exp,
|
93 |
-
}
|
94 |
-
)
|
95 |
-
print(metrics[-1])
|
96 |
-
|
97 |
-
transform_args = flatten(item["transform_args"], "dot")
|
98 |
-
for k, v in transform_args.items():
|
99 |
-
if torch.is_tensor(v):
|
100 |
-
if len(v.shape) == 0:
|
101 |
-
metrics[-1][k] = v.item()
|
102 |
-
|
103 |
-
metrics = pd.DataFrame.from_dict(metrics)
|
104 |
-
with open(csv_path, "w") as f:
|
105 |
-
metrics.to_csv(f)
|
106 |
-
|
107 |
-
data = summary(model_tag).to_dict()
|
108 |
-
metrics = {}
|
109 |
-
for k1, v1 in data.items():
|
110 |
-
for k2, v2 in v1.items():
|
111 |
-
metrics[f"metrics/{k2}/{k1}"] = v2
|
112 |
-
|
113 |
-
# Number of steps to record
|
114 |
-
writer = SummaryWriter(log_dir=metrics_path)
|
115 |
-
num_steps = 10
|
116 |
-
for k, v in metrics.items():
|
117 |
-
for i in range(num_steps):
|
118 |
-
writer.add_scalar(k, v, i)
|
119 |
-
|
120 |
-
|
121 |
-
if __name__ == "__main__":
|
122 |
-
args = argbind.parse_args()
|
123 |
-
with argbind.scope(args):
|
124 |
-
evaluate(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|