Spaces:
Sleeping
Sleeping
harp (#10)
Browse files- .gitignore +4 -0
- app.py +71 -11
- conf/lora/lora.yml +2 -2
- conf/vampnet.yml +1 -1
- scripts/exp/train.py +7 -7
- scripts/utils/{augment.py → data/augment.py} +1 -1
- scripts/utils/{maestro-reorg.py → data/maestro-reorg.py} +0 -0
- scripts/utils/gtzan_embeddings.py +263 -0
- vampnet/modules/transformer.py +28 -12
.gitignore
CHANGED
@@ -182,3 +182,7 @@ models.zip
|
|
182 |
.git-old
|
183 |
conf/generated/*
|
184 |
runs*/
|
|
|
|
|
|
|
|
|
|
182 |
.git-old
|
183 |
conf/generated/*
|
184 |
runs*/
|
185 |
+
|
186 |
+
|
187 |
+
gtzan.zip
|
188 |
+
.gtzan_emb_cache
|
app.py
CHANGED
@@ -21,8 +21,7 @@ import gradio as gr
|
|
21 |
from vampnet.interface import Interface
|
22 |
from vampnet import mask as pmask
|
23 |
|
24 |
-
|
25 |
-
# AudioLoader = argbind.bind(at.data.datasets.AudioLoader)
|
26 |
|
27 |
|
28 |
|
@@ -54,13 +53,6 @@ def load_interface():
|
|
54 |
|
55 |
interface = load_interface()
|
56 |
|
57 |
-
# dataset = at.data.datasets.AudioDataset(
|
58 |
-
# loader,
|
59 |
-
# sample_rate=interface.codec.sample_rate,
|
60 |
-
# duration=interface.coarse.chunk_size_s,
|
61 |
-
# n_examples=5000,
|
62 |
-
# without_replacement=True,
|
63 |
-
# )
|
64 |
|
65 |
OUT_DIR = Path("gradio-outputs")
|
66 |
OUT_DIR.mkdir(exist_ok=True, parents=True)
|
@@ -250,6 +242,46 @@ def save_vamp(data):
|
|
250 |
return f"saved! your save code is {out_dir.stem}", zip_path
|
251 |
|
252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
with gr.Blocks() as demo:
|
255 |
|
@@ -373,7 +405,7 @@ with gr.Blocks() as demo:
|
|
373 |
minimum=0,
|
374 |
maximum=128,
|
375 |
step=1,
|
376 |
-
value=
|
377 |
)
|
378 |
|
379 |
|
@@ -386,7 +418,7 @@ with gr.Blocks() as demo:
|
|
386 |
)
|
387 |
|
388 |
beat_mask_width = gr.Slider(
|
389 |
-
label="beat
|
390 |
minimum=0,
|
391 |
maximum=200,
|
392 |
value=0,
|
@@ -546,6 +578,14 @@ with gr.Blocks() as demo:
|
|
546 |
|
547 |
# mask settings
|
548 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
549 |
vamp_button = gr.Button("generate (vamp)!!!")
|
550 |
output_audio = gr.Audio(
|
551 |
label="output audio",
|
@@ -620,4 +660,24 @@ with gr.Blocks() as demo:
|
|
620 |
outputs=[thank_you, download_file]
|
621 |
)
|
622 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
623 |
demo.launch()
|
|
|
21 |
from vampnet.interface import Interface
|
22 |
from vampnet import mask as pmask
|
23 |
|
24 |
+
from pyharp import ModelCard, build_endpoint
|
|
|
25 |
|
26 |
|
27 |
|
|
|
53 |
|
54 |
interface = load_interface()
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
OUT_DIR = Path("gradio-outputs")
|
58 |
OUT_DIR.mkdir(exist_ok=True, parents=True)
|
|
|
242 |
return f"saved! your save code is {out_dir.stem}", zip_path
|
243 |
|
244 |
|
245 |
+
def harp_vamp(_input_audio, _beat_mask_width, _sampletemp):
|
246 |
+
|
247 |
+
out_dir = OUT_DIR / str(uuid.uuid4())
|
248 |
+
out_dir.mkdir()
|
249 |
+
sig = at.AudioSignal(_input_audio)
|
250 |
+
sig = interface.preprocess(sig)
|
251 |
+
|
252 |
+
z = interface.encode(sig)
|
253 |
+
|
254 |
+
# build the mask
|
255 |
+
mask = pmask.linear_random(z, 1.0)
|
256 |
+
if _beat_mask_width > 0:
|
257 |
+
beat_mask = interface.make_beat_mask(
|
258 |
+
sig,
|
259 |
+
after_beat_s=(_beat_mask_width/1000),
|
260 |
+
)
|
261 |
+
mask = pmask.mask_and(mask, beat_mask)
|
262 |
+
|
263 |
+
# save the mask as a txt file
|
264 |
+
zv, mask_z = interface.coarse_vamp(
|
265 |
+
z,
|
266 |
+
mask=mask,
|
267 |
+
sampling_temperature=_sampletemp,
|
268 |
+
return_mask=True,
|
269 |
+
gen_fn=interface.coarse.generate,
|
270 |
+
)
|
271 |
+
|
272 |
+
|
273 |
+
zv = interface.coarse_to_fine(
|
274 |
+
zv,
|
275 |
+
sampling_temperature=_sampletemp,
|
276 |
+
mask=mask,
|
277 |
+
)
|
278 |
+
|
279 |
+
sig = interface.to_signal(zv).cpu()
|
280 |
+
print("done")
|
281 |
+
|
282 |
+
sig.write(out_dir / "output.wav")
|
283 |
+
|
284 |
+
return sig.path_to_file
|
285 |
|
286 |
with gr.Blocks() as demo:
|
287 |
|
|
|
405 |
minimum=0,
|
406 |
maximum=128,
|
407 |
step=1,
|
408 |
+
value=3,
|
409 |
)
|
410 |
|
411 |
|
|
|
418 |
)
|
419 |
|
420 |
beat_mask_width = gr.Slider(
|
421 |
+
label="beat prompt (ms)",
|
422 |
minimum=0,
|
423 |
maximum=200,
|
424 |
value=0,
|
|
|
578 |
|
579 |
# mask settings
|
580 |
with gr.Column():
|
581 |
+
|
582 |
+
# lora_choice = gr.Dropdown(
|
583 |
+
# label="lora choice",
|
584 |
+
# choices=list(loras.keys()),
|
585 |
+
# value=LORA_NONE,
|
586 |
+
# visible=False
|
587 |
+
# )
|
588 |
+
|
589 |
vamp_button = gr.Button("generate (vamp)!!!")
|
590 |
output_audio = gr.Audio(
|
591 |
label="output audio",
|
|
|
660 |
outputs=[thank_you, download_file]
|
661 |
)
|
662 |
|
663 |
+
# harp stuff
|
664 |
+
harp_inputs = [
|
665 |
+
input_audio,
|
666 |
+
beat_mask_width,
|
667 |
+
sampletemp,
|
668 |
+
]
|
669 |
+
|
670 |
+
build_endpoint(
|
671 |
+
inputs=harp_inputs,
|
672 |
+
output=output_audio,
|
673 |
+
process_fn=harp_vamp,
|
674 |
+
card=ModelCard(
|
675 |
+
name="vampnet",
|
676 |
+
description="Generate variations on music input, based on small prompts around the beat.",
|
677 |
+
author="Hugo Flores García",
|
678 |
+
tags=["music", "generative"]
|
679 |
+
),
|
680 |
+
visible=False
|
681 |
+
)
|
682 |
+
|
683 |
demo.launch()
|
conf/lora/lora.yml
CHANGED
@@ -9,9 +9,9 @@ val/AudioDataset.n_examples: 500
|
|
9 |
|
10 |
NoamScheduler.warmup: 500
|
11 |
|
12 |
-
batch_size:
|
13 |
num_workers: 7
|
14 |
-
save_iters: [10000, 20000, 30000, 40000, 50000]
|
15 |
sample_freq: 1000
|
16 |
val_freq: 500
|
17 |
|
|
|
9 |
|
10 |
NoamScheduler.warmup: 500
|
11 |
|
12 |
+
batch_size: 6
|
13 |
num_workers: 7
|
14 |
+
save_iters: [10000, 20000, 30000, 40000, 50000, 100000]
|
15 |
sample_freq: 1000
|
16 |
val_freq: 500
|
17 |
|
conf/vampnet.yml
CHANGED
@@ -32,7 +32,7 @@ VampNet.n_heads: 20
|
|
32 |
VampNet.flash_attn: false
|
33 |
VampNet.dropout: 0.1
|
34 |
|
35 |
-
AudioLoader.relative_path:
|
36 |
AudioDataset.loudness_cutoff: -30.0
|
37 |
AudioDataset.without_replacement: true
|
38 |
AudioLoader.shuffle: true
|
|
|
32 |
VampNet.flash_attn: false
|
33 |
VampNet.dropout: 0.1
|
34 |
|
35 |
+
AudioLoader.relative_path: ""
|
36 |
AudioDataset.loudness_cutoff: -30.0
|
37 |
AudioDataset.without_replacement: true
|
38 |
AudioLoader.shuffle: true
|
scripts/exp/train.py
CHANGED
@@ -224,7 +224,7 @@ def train_loop(state: State, batch: dict, accel: Accelerator):
|
|
224 |
|
225 |
dtype = torch.bfloat16 if accel.amp else None
|
226 |
with accel.autocast(dtype=dtype):
|
227 |
-
z_hat = state.model(z_mask_latent
|
228 |
|
229 |
target = codebook_flatten(
|
230 |
z[:, vn.n_conditioning_codebooks :, :],
|
@@ -289,7 +289,7 @@ def val_loop(state: State, batch: dict, accel: Accelerator):
|
|
289 |
|
290 |
z_mask_latent = vn.embedding.from_codes(z_mask, state.codec)
|
291 |
|
292 |
-
z_hat = state.model(z_mask_latent
|
293 |
|
294 |
target = codebook_flatten(
|
295 |
z[:, vn.n_conditioning_codebooks :, :],
|
@@ -408,19 +408,19 @@ def save_imputation(state, z, val_idx, writer):
|
|
408 |
|
409 |
for i in range(len(val_idx)):
|
410 |
imputed_noisy[i].cpu().write_audio_to_tb(
|
411 |
-
f"
|
412 |
writer,
|
413 |
step=state.tracker.step,
|
414 |
plot_fn=None,
|
415 |
)
|
416 |
imputed[i].cpu().write_audio_to_tb(
|
417 |
-
f"
|
418 |
writer,
|
419 |
step=state.tracker.step,
|
420 |
plot_fn=None,
|
421 |
)
|
422 |
imputed_true[i].cpu().write_audio_to_tb(
|
423 |
-
f"
|
424 |
writer,
|
425 |
step=state.tracker.step,
|
426 |
plot_fn=None,
|
@@ -450,7 +450,7 @@ def save_samples(state: State, val_idx: int, writer: SummaryWriter):
|
|
450 |
|
451 |
z_mask_latent = vn.embedding.from_codes(z_mask, state.codec)
|
452 |
|
453 |
-
z_hat = state.model(z_mask_latent
|
454 |
|
455 |
z_pred = torch.softmax(z_hat, dim=1).argmax(dim=1)
|
456 |
z_pred = codebook_unflatten(z_pred, n_c=vn.n_predict_codebooks)
|
@@ -469,7 +469,7 @@ def save_samples(state: State, val_idx: int, writer: SummaryWriter):
|
|
469 |
}
|
470 |
for k, v in audio_dict.items():
|
471 |
v.cpu().write_audio_to_tb(
|
472 |
-
f"
|
473 |
writer,
|
474 |
step=state.tracker.step,
|
475 |
plot_fn=None,
|
|
|
224 |
|
225 |
dtype = torch.bfloat16 if accel.amp else None
|
226 |
with accel.autocast(dtype=dtype):
|
227 |
+
z_hat = state.model(z_mask_latent)
|
228 |
|
229 |
target = codebook_flatten(
|
230 |
z[:, vn.n_conditioning_codebooks :, :],
|
|
|
289 |
|
290 |
z_mask_latent = vn.embedding.from_codes(z_mask, state.codec)
|
291 |
|
292 |
+
z_hat = state.model(z_mask_latent)
|
293 |
|
294 |
target = codebook_flatten(
|
295 |
z[:, vn.n_conditioning_codebooks :, :],
|
|
|
408 |
|
409 |
for i in range(len(val_idx)):
|
410 |
imputed_noisy[i].cpu().write_audio_to_tb(
|
411 |
+
f"inpainted_prompt/{i}",
|
412 |
writer,
|
413 |
step=state.tracker.step,
|
414 |
plot_fn=None,
|
415 |
)
|
416 |
imputed[i].cpu().write_audio_to_tb(
|
417 |
+
f"inpainted_middle/{i}",
|
418 |
writer,
|
419 |
step=state.tracker.step,
|
420 |
plot_fn=None,
|
421 |
)
|
422 |
imputed_true[i].cpu().write_audio_to_tb(
|
423 |
+
f"reconstructed/{i}",
|
424 |
writer,
|
425 |
step=state.tracker.step,
|
426 |
plot_fn=None,
|
|
|
450 |
|
451 |
z_mask_latent = vn.embedding.from_codes(z_mask, state.codec)
|
452 |
|
453 |
+
z_hat = state.model(z_mask_latent)
|
454 |
|
455 |
z_pred = torch.softmax(z_hat, dim=1).argmax(dim=1)
|
456 |
z_pred = codebook_unflatten(z_pred, n_c=vn.n_predict_codebooks)
|
|
|
469 |
}
|
470 |
for k, v in audio_dict.items():
|
471 |
v.cpu().write_audio_to_tb(
|
472 |
+
f"onestep/_{i}.r={r[i]:0.2f}/{k}",
|
473 |
writer,
|
474 |
step=state.tracker.step,
|
475 |
plot_fn=None,
|
scripts/utils/{augment.py → data/augment.py}
RENAMED
@@ -64,4 +64,4 @@ if __name__ == "__main__":
|
|
64 |
args = argbind.parse_args()
|
65 |
|
66 |
with argbind.scope(args):
|
67 |
-
augment()
|
|
|
64 |
args = argbind.parse_args()
|
65 |
|
66 |
with argbind.scope(args):
|
67 |
+
augment()
|
scripts/utils/{maestro-reorg.py → data/maestro-reorg.py}
RENAMED
File without changes
|
scripts/utils/gtzan_embeddings.py
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
TODO: train a linear probe
|
3 |
+
usage:
|
4 |
+
python gtzan_embeddings.py --args.load conf/interface.yml --Interface.device cuda --path_to_gtzan /path/to/gtzan/genres_original --output_dir /path/to/output
|
5 |
+
"""
|
6 |
+
from pathlib import Path
|
7 |
+
from typing import List
|
8 |
+
|
9 |
+
import audiotools as at
|
10 |
+
from audiotools import AudioSignal
|
11 |
+
import argbind
|
12 |
+
import torch
|
13 |
+
import numpy as np
|
14 |
+
import zipfile
|
15 |
+
import json
|
16 |
+
|
17 |
+
from vampnet.interface import Interface
|
18 |
+
import tqdm
|
19 |
+
|
20 |
+
# bind the Interface to argbind
|
21 |
+
Interface = argbind.bind(Interface)
|
22 |
+
|
23 |
+
DEBUG = False
|
24 |
+
|
25 |
+
def smart_plotly_export(fig, save_path):
|
26 |
+
img_format = save_path.split('.')[-1]
|
27 |
+
if img_format == 'html':
|
28 |
+
fig.write_html(save_path)
|
29 |
+
elif img_format == 'bytes':
|
30 |
+
return fig.to_image(format='png')
|
31 |
+
#TODO: come back and make this prettier
|
32 |
+
elif img_format == 'numpy':
|
33 |
+
import io
|
34 |
+
from PIL import Image
|
35 |
+
|
36 |
+
def plotly_fig2array(fig):
|
37 |
+
#convert Plotly fig to an array
|
38 |
+
fig_bytes = fig.to_image(format="png", width=1200, height=700)
|
39 |
+
buf = io.BytesIO(fig_bytes)
|
40 |
+
img = Image.open(buf)
|
41 |
+
return np.asarray(img)
|
42 |
+
|
43 |
+
return plotly_fig2array(fig)
|
44 |
+
elif img_format == 'jpeg' or 'png' or 'webp':
|
45 |
+
fig.write_image(save_path)
|
46 |
+
else:
|
47 |
+
raise ValueError("invalid image format")
|
48 |
+
|
49 |
+
def dim_reduce(emb, labels, save_path, n_components=3, method='tsne', title=''):
|
50 |
+
"""
|
51 |
+
dimensionality reduction for visualization!
|
52 |
+
saves an html plotly figure to save_path
|
53 |
+
parameters:
|
54 |
+
emb (np.ndarray): the samples to be reduces with shape (samples, features)
|
55 |
+
labels (list): list of labels for embedding
|
56 |
+
save_path (str): path where u wanna save ur figure
|
57 |
+
method (str): umap, tsne, or pca
|
58 |
+
title (str): title for ur figure
|
59 |
+
returns:
|
60 |
+
proj (np.ndarray): projection vector with shape (samples, dimensions)
|
61 |
+
"""
|
62 |
+
import pandas as pd
|
63 |
+
import plotly.express as px
|
64 |
+
if method == 'umap':
|
65 |
+
reducer = umap.UMAP(n_components=n_components)
|
66 |
+
elif method == 'tsne':
|
67 |
+
from sklearn.manifold import TSNE
|
68 |
+
reducer = TSNE(n_components=n_components)
|
69 |
+
elif method == 'pca':
|
70 |
+
from sklearn.decomposition import PCA
|
71 |
+
reducer = PCA(n_components=n_components)
|
72 |
+
else:
|
73 |
+
raise ValueError
|
74 |
+
|
75 |
+
proj = reducer.fit_transform(emb)
|
76 |
+
|
77 |
+
if n_components == 2:
|
78 |
+
df = pd.DataFrame(dict(
|
79 |
+
x=proj[:, 0],
|
80 |
+
y=proj[:, 1],
|
81 |
+
instrument=labels
|
82 |
+
))
|
83 |
+
fig = px.scatter(df, x='x', y='y', color='instrument',
|
84 |
+
title=title+f"_{method}")
|
85 |
+
|
86 |
+
elif n_components == 3:
|
87 |
+
df = pd.DataFrame(dict(
|
88 |
+
x=proj[:, 0],
|
89 |
+
y=proj[:, 1],
|
90 |
+
z=proj[:, 2],
|
91 |
+
instrument=labels
|
92 |
+
))
|
93 |
+
fig = px.scatter_3d(df, x='x', y='y', z='z',
|
94 |
+
color='instrument',
|
95 |
+
title=title)
|
96 |
+
else:
|
97 |
+
raise ValueError("cant plot more than 3 components")
|
98 |
+
|
99 |
+
fig.update_traces(marker=dict(size=6,
|
100 |
+
line=dict(width=1,
|
101 |
+
color='DarkSlateGrey')),
|
102 |
+
selector=dict(mode='markers'))
|
103 |
+
|
104 |
+
return smart_plotly_export(fig, save_path)
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
# per JukeMIR, we want the emebddings from the middle layer?
|
109 |
+
def vampnet_embed(sig: AudioSignal, interface: Interface, layer=10):
|
110 |
+
with torch.inference_mode():
|
111 |
+
# preprocess the signal
|
112 |
+
sig = interface.preprocess(sig)
|
113 |
+
|
114 |
+
# get the coarse vampnet model
|
115 |
+
vampnet = interface.coarse
|
116 |
+
|
117 |
+
# get the tokens
|
118 |
+
z = interface.encode(sig)[:, :vampnet.n_codebooks, :]
|
119 |
+
z_latents = vampnet.embedding.from_codes(z, interface.codec)
|
120 |
+
|
121 |
+
# do a forward pass through the model, get the embeddings
|
122 |
+
_z, embeddings = vampnet(z_latents, return_activations=True)
|
123 |
+
# print(f"got embeddings with shape {embeddings.shape}")
|
124 |
+
# [layer, batch, time, n_dims]
|
125 |
+
# [20, 1, 600ish, 768]
|
126 |
+
|
127 |
+
|
128 |
+
# squeeze batch dim (1 bc layer should be dim 0)
|
129 |
+
assert embeddings.shape[1] == 1, f"expected batch dim to be 1, got {embeddings.shape[0]}"
|
130 |
+
embeddings = embeddings.squeeze(1)
|
131 |
+
|
132 |
+
num_layers = embeddings.shape[0]
|
133 |
+
assert layer < num_layers, f"layer {layer} is out of bounds for model with {num_layers} layers"
|
134 |
+
|
135 |
+
# do meanpooling over the time dimension
|
136 |
+
embeddings = embeddings.mean(dim=-2)
|
137 |
+
# [20, 768]
|
138 |
+
|
139 |
+
# return the embeddings
|
140 |
+
return embeddings
|
141 |
+
|
142 |
+
from dataclasses import dataclass, fields
|
143 |
+
@dataclass
|
144 |
+
class Embedding:
|
145 |
+
genre: str
|
146 |
+
filename: str
|
147 |
+
embedding: np.ndarray
|
148 |
+
|
149 |
+
def save(self, path):
|
150 |
+
"""Save the Embedding object to a given path as a zip file."""
|
151 |
+
with zipfile.ZipFile(path, 'w') as archive:
|
152 |
+
|
153 |
+
# Save numpy array
|
154 |
+
with archive.open('embedding.npy', 'w') as f:
|
155 |
+
np.save(f, self.embedding)
|
156 |
+
|
157 |
+
# Save non-numpy data as json
|
158 |
+
non_numpy_data = {f.name: getattr(self, f.name) for f in fields(self) if f.name != 'embedding'}
|
159 |
+
with archive.open('data.json', 'w') as f:
|
160 |
+
f.write(json.dumps(non_numpy_data).encode('utf-8'))
|
161 |
+
|
162 |
+
@classmethod
|
163 |
+
def load(cls, path):
|
164 |
+
"""Load the Embedding object from a given zip path."""
|
165 |
+
with zipfile.ZipFile(path, 'r') as archive:
|
166 |
+
|
167 |
+
# Load numpy array
|
168 |
+
with archive.open('embedding.npy') as f:
|
169 |
+
embedding = np.load(f)
|
170 |
+
|
171 |
+
# Load non-numpy data from json
|
172 |
+
with archive.open('data.json') as f:
|
173 |
+
data = json.loads(f.read().decode('utf-8'))
|
174 |
+
|
175 |
+
return cls(embedding=embedding, **data)
|
176 |
+
|
177 |
+
|
178 |
+
@argbind.bind(without_prefix=True)
|
179 |
+
def main(
|
180 |
+
path_to_gtzan: str = None,
|
181 |
+
cache_dir: str = "./.gtzan_emb_cache",
|
182 |
+
output_dir: str = "./gtzan_vampnet_embeddings",
|
183 |
+
layers: List[int] = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
|
184 |
+
):
|
185 |
+
path_to_gtzan = Path(path_to_gtzan)
|
186 |
+
assert path_to_gtzan.exists(), f"{path_to_gtzan} does not exist"
|
187 |
+
|
188 |
+
cache_dir = Path(cache_dir)
|
189 |
+
output_dir = Path(output_dir)
|
190 |
+
output_dir.mkdir(exist_ok=True, parents=True)
|
191 |
+
|
192 |
+
# load our interface
|
193 |
+
# argbind will automatically load the default config,
|
194 |
+
interface = Interface()
|
195 |
+
|
196 |
+
# gtzan should have a folder for each genre, so let's get the list of genres
|
197 |
+
genres = [Path(x).name for x in path_to_gtzan.iterdir() if x.is_dir()]
|
198 |
+
print(f"Found {len(genres)} genres")
|
199 |
+
print(f"genres: {genres}")
|
200 |
+
|
201 |
+
# collect audio files, genres, and embeddings
|
202 |
+
data = []
|
203 |
+
for genre in genres:
|
204 |
+
audio_files = list(at.util.find_audio(path_to_gtzan / genre))
|
205 |
+
print(f"Found {len(audio_files)} audio files for genre {genre}")
|
206 |
+
|
207 |
+
for audio_file in tqdm.tqdm(audio_files, desc=f"embedding genre {genre}"):
|
208 |
+
# check if we have a cached embedding for this file
|
209 |
+
cached_path = (cache_dir / f"{genre}_{audio_file.stem}.emb")
|
210 |
+
if cached_path.exists():
|
211 |
+
# if so, load it
|
212 |
+
if DEBUG:
|
213 |
+
print(f"loading cached embedding for {cached_path.stem}")
|
214 |
+
embedding = Embedding.load(cached_path)
|
215 |
+
data.append(embedding)
|
216 |
+
else:
|
217 |
+
try:
|
218 |
+
sig = AudioSignal(audio_file)
|
219 |
+
except Exception as e:
|
220 |
+
print(f"failed to load {audio_file.name} with error {e}")
|
221 |
+
print(f"skipping {audio_file.name}")
|
222 |
+
continue
|
223 |
+
|
224 |
+
# gets the embedding
|
225 |
+
emb = vampnet_embed(sig, interface).cpu().numpy()
|
226 |
+
|
227 |
+
# create an embedding we can save/load
|
228 |
+
embedding = Embedding(
|
229 |
+
genre=genre,
|
230 |
+
filename=audio_file.name,
|
231 |
+
embedding=emb
|
232 |
+
)
|
233 |
+
|
234 |
+
# cache the embeddings
|
235 |
+
cached_path.parent.mkdir(exist_ok=True, parents=True)
|
236 |
+
embedding.save(cached_path)
|
237 |
+
|
238 |
+
# now, let's do a dim reduction on the embeddings
|
239 |
+
# and visualize them.
|
240 |
+
|
241 |
+
# collect a list of embeddings and labels
|
242 |
+
embeddings = [d.embedding for d in data]
|
243 |
+
labels = [d.genre for d in data]
|
244 |
+
|
245 |
+
# convert the embeddings to a numpy array
|
246 |
+
embeddings = np.stack(embeddings)
|
247 |
+
|
248 |
+
# do dimensionality reduction for each layer we're given
|
249 |
+
for layer in tqdm.tqdm(layers, desc="dim reduction"):
|
250 |
+
dim_reduce(
|
251 |
+
embeddings[:, layer, :], labels,
|
252 |
+
save_path=str(output_dir / f'vampnet-gtzan-layer={layer}.html'),
|
253 |
+
n_components=2, method='tsne',
|
254 |
+
title=f'vampnet-gtzan-layer={layer}'
|
255 |
+
)
|
256 |
+
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
if __name__ == "__main__":
|
261 |
+
args = argbind.parse_args()
|
262 |
+
with argbind.scope(args):
|
263 |
+
main()
|
vampnet/modules/transformer.py
CHANGED
@@ -410,7 +410,9 @@ class TransformerStack(nn.Module):
|
|
410 |
def subsequent_mask(self, size):
|
411 |
return torch.ones(1, size, size).tril().bool()
|
412 |
|
413 |
-
def forward(self, x, x_mask, cond=None, src=None, src_mask=None
|
|
|
|
|
414 |
"""Computes a full transformer stack
|
415 |
Parameters
|
416 |
----------
|
@@ -437,6 +439,8 @@ class TransformerStack(nn.Module):
|
|
437 |
encoder_decoder_position_bias = None
|
438 |
|
439 |
# Compute transformer layers
|
|
|
|
|
440 |
for layer in self.layers:
|
441 |
x, position_bias, encoder_decoder_position_bias = layer(
|
442 |
x=x,
|
@@ -447,8 +451,15 @@ class TransformerStack(nn.Module):
|
|
447 |
position_bias=position_bias,
|
448 |
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
449 |
)
|
|
|
|
|
450 |
|
451 |
-
|
|
|
|
|
|
|
|
|
|
|
452 |
|
453 |
|
454 |
class VampNet(at.ml.BaseModel):
|
@@ -456,7 +467,7 @@ class VampNet(at.ml.BaseModel):
|
|
456 |
self,
|
457 |
n_heads: int = 20,
|
458 |
n_layers: int = 16,
|
459 |
-
r_cond_dim: int =
|
460 |
n_codebooks: int = 9,
|
461 |
n_conditioning_codebooks: int = 0,
|
462 |
latent_dim: int = 8,
|
@@ -467,6 +478,7 @@ class VampNet(at.ml.BaseModel):
|
|
467 |
dropout: float = 0.1
|
468 |
):
|
469 |
super().__init__()
|
|
|
470 |
self.n_heads = n_heads
|
471 |
self.n_layers = n_layers
|
472 |
self.r_cond_dim = r_cond_dim
|
@@ -513,21 +525,25 @@ class VampNet(at.ml.BaseModel):
|
|
513 |
),
|
514 |
)
|
515 |
|
516 |
-
def forward(self, x,
|
517 |
x = self.embedding(x)
|
518 |
x_mask = torch.ones_like(x, dtype=torch.bool)[:, :1, :].squeeze(1)
|
519 |
|
520 |
-
cond = self.r_embed(cond)
|
521 |
-
|
522 |
x = rearrange(x, "b d n -> b n d")
|
523 |
-
out = self.transformer(x=x, x_mask=x_mask,
|
|
|
|
|
|
|
524 |
out = rearrange(out, "b n d -> b d n")
|
525 |
|
526 |
-
out = self.classifier(out, cond
|
527 |
|
528 |
out = rearrange(out, "b (p c) t -> b p (t c)", c=self.n_predict_codebooks)
|
529 |
|
530 |
-
|
|
|
|
|
|
|
531 |
|
532 |
def r_embed(self, r, max_positions=10000):
|
533 |
if self.r_cond_dim > 0:
|
@@ -589,7 +605,7 @@ class VampNet(at.ml.BaseModel):
|
|
589 |
top_p=None,
|
590 |
return_signal=True,
|
591 |
seed: int = None,
|
592 |
-
sample_cutoff: float = 0
|
593 |
):
|
594 |
if seed is not None:
|
595 |
at.util.seed(seed)
|
@@ -660,7 +676,7 @@ class VampNet(at.ml.BaseModel):
|
|
660 |
|
661 |
# infer from latents
|
662 |
# NOTE: this collapses the codebook dimension into the sequence dimension
|
663 |
-
logits = self.forward(latents
|
664 |
logits = logits.permute(0, 2, 1) # b, seq, prob
|
665 |
b = logits.shape[0]
|
666 |
|
@@ -921,7 +937,7 @@ if __name__ == "__main__":
|
|
921 |
z_mask_latent = torch.rand(
|
922 |
batch_size, model.latent_dim * model.n_codebooks, seq_len
|
923 |
).to(device)
|
924 |
-
z_hat = model(z_mask_latent
|
925 |
|
926 |
pred = z_hat.argmax(dim=1)
|
927 |
pred = model.embedding.unflatten(pred, n_codebooks=model.n_predict_codebooks)
|
|
|
410 |
def subsequent_mask(self, size):
|
411 |
return torch.ones(1, size, size).tril().bool()
|
412 |
|
413 |
+
def forward(self, x, x_mask, cond=None, src=None, src_mask=None,
|
414 |
+
return_activations: bool = False
|
415 |
+
):
|
416 |
"""Computes a full transformer stack
|
417 |
Parameters
|
418 |
----------
|
|
|
439 |
encoder_decoder_position_bias = None
|
440 |
|
441 |
# Compute transformer layers
|
442 |
+
if return_activations:
|
443 |
+
activations = []
|
444 |
for layer in self.layers:
|
445 |
x, position_bias, encoder_decoder_position_bias = layer(
|
446 |
x=x,
|
|
|
451 |
position_bias=position_bias,
|
452 |
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
453 |
)
|
454 |
+
if return_activations:
|
455 |
+
activations.append(x.detach())
|
456 |
|
457 |
+
|
458 |
+
out = self.norm(x) if self.norm is not None else x
|
459 |
+
if return_activations:
|
460 |
+
return out, torch.stack(activations)
|
461 |
+
else:
|
462 |
+
return out
|
463 |
|
464 |
|
465 |
class VampNet(at.ml.BaseModel):
|
|
|
467 |
self,
|
468 |
n_heads: int = 20,
|
469 |
n_layers: int = 16,
|
470 |
+
r_cond_dim: int = 0,
|
471 |
n_codebooks: int = 9,
|
472 |
n_conditioning_codebooks: int = 0,
|
473 |
latent_dim: int = 8,
|
|
|
478 |
dropout: float = 0.1
|
479 |
):
|
480 |
super().__init__()
|
481 |
+
assert r_cond_dim == 0, f"r_cond_dim must be 0 (not supported), but got {r_cond_dim}"
|
482 |
self.n_heads = n_heads
|
483 |
self.n_layers = n_layers
|
484 |
self.r_cond_dim = r_cond_dim
|
|
|
525 |
),
|
526 |
)
|
527 |
|
528 |
+
def forward(self, x, return_activations: bool = False):
|
529 |
x = self.embedding(x)
|
530 |
x_mask = torch.ones_like(x, dtype=torch.bool)[:, :1, :].squeeze(1)
|
531 |
|
|
|
|
|
532 |
x = rearrange(x, "b d n -> b n d")
|
533 |
+
out = self.transformer(x=x, x_mask=x_mask, return_activations=return_activations)
|
534 |
+
if return_activations:
|
535 |
+
out, activations = out
|
536 |
+
|
537 |
out = rearrange(out, "b n d -> b d n")
|
538 |
|
539 |
+
out = self.classifier(out, None) # no cond here!
|
540 |
|
541 |
out = rearrange(out, "b (p c) t -> b p (t c)", c=self.n_predict_codebooks)
|
542 |
|
543 |
+
if return_activations:
|
544 |
+
return out, activations
|
545 |
+
else:
|
546 |
+
return out
|
547 |
|
548 |
def r_embed(self, r, max_positions=10000):
|
549 |
if self.r_cond_dim > 0:
|
|
|
605 |
top_p=None,
|
606 |
return_signal=True,
|
607 |
seed: int = None,
|
608 |
+
sample_cutoff: float = 1.0,
|
609 |
):
|
610 |
if seed is not None:
|
611 |
at.util.seed(seed)
|
|
|
676 |
|
677 |
# infer from latents
|
678 |
# NOTE: this collapses the codebook dimension into the sequence dimension
|
679 |
+
logits = self.forward(latents) # b, prob, seq
|
680 |
logits = logits.permute(0, 2, 1) # b, seq, prob
|
681 |
b = logits.shape[0]
|
682 |
|
|
|
937 |
z_mask_latent = torch.rand(
|
938 |
batch_size, model.latent_dim * model.n_codebooks, seq_len
|
939 |
).to(device)
|
940 |
+
z_hat = model(z_mask_latent)
|
941 |
|
942 |
pred = z_hat.argmax(dim=1)
|
943 |
pred = model.embedding.unflatten(pred, n_codebooks=model.n_predict_codebooks)
|