# -------------------------------------------------------- # InternVL # Copyright (c) 2024 OpenGVLab # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- import argparse import base64 import datetime import hashlib import json import os import random import re import sys # from streamlit_js_eval import streamlit_js_eval from functools import partial from io import BytesIO import cv2 import numpy as np import requests import streamlit as st from constants import LOGDIR, server_error_msg from library import Library from PIL import Image, ImageDraw, ImageFont from streamlit_image_select import image_select custom_args = sys.argv[1:] parser = argparse.ArgumentParser() parser.add_argument('--controller_url', type=str, default='http://10.140.60.209:10075', help='url of the controller') parser.add_argument('--sd_worker_url', type=str, default='http://0.0.0.0:40006', help='url of the stable diffusion worker') parser.add_argument('--max_image_limit', type=int, default=4, help='maximum number of images') args = parser.parse_args(custom_args) controller_url = args.controller_url sd_worker_url = args.sd_worker_url max_image_limit = args.max_image_limit print('args:', args) def get_model_list(): ret = requests.post(controller_url + '/refresh_all_workers') assert ret.status_code == 200 ret = requests.post(controller_url + '/list_models') models = ret.json()['models'] return models def load_upload_file_and_show(): if uploaded_files is not None: images = [] for file in uploaded_files: file_bytes = np.asarray(bytearray(file.read()), dtype=np.uint8) img = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = Image.fromarray(img) images.append(img) with upload_image_preview.container(): Library(images) image_hashes = [hashlib.md5(image.tobytes()).hexdigest() for image in images] for image, hash in zip(images, image_hashes): t = datetime.datetime.now() filename = os.path.join(LOGDIR, 'serve_images', f'{t.year}-{t.month:02d}-{t.day:02d}', f'{hash}.jpg') if not os.path.isfile(filename): os.makedirs(os.path.dirname(filename), exist_ok=True) image.save(filename) return images def get_selected_worker_ip(): ret = requests.post(controller_url + '/get_worker_address', json={'model': selected_model}) worker_addr = ret.json()['address'] return worker_addr def generate_response(messages): send_messages = [{'role': 'system', 'content': persona_rec}] for message in messages: if message['role'] == 'user': user_message = {'role': 'user', 'content': message['content']} if 'image' in message and len('image') > 0: user_message['image'] = [] for image in message['image']: user_message['image'].append(pil_image_to_base64(image)) send_messages.append(user_message) else: send_messages.append({'role': 'assistant', 'content': message['content']}) pload = { 'model': selected_model, 'prompt': send_messages, 'temperature': float(temperature), 'top_p': float(top_p), 'max_new_tokens': max_length, 'max_input_tiles': max_input_tiles, 'repetition_penalty': float(repetition_penalty), } worker_addr = get_selected_worker_ip() headers = {'User-Agent': 'InternVL-Chat Client'} placeholder, output = st.empty(), '' try: response = requests.post(worker_addr + '/worker_generate_stream', headers=headers, json=pload, stream=True, timeout=10) for chunk in response.iter_lines(decode_unicode=False, delimiter=b'\0'): if chunk: data = json.loads(chunk.decode()) if data['error_code'] == 0: output = data['text'] # Phi3-3.8B will produce abnormal `�` output if '4B' in selected_model and '�' in output[-2:]: output = output.replace('�', '') break placeholder.markdown(output + '▌') else: output = data['text'] + f" (error_code: {data['error_code']})" placeholder.markdown(output) placeholder.markdown(output) except requests.exceptions.RequestException as e: placeholder.markdown(server_error_msg) return output def pil_image_to_base64(image): buffered = BytesIO() image.save(buffered, format='PNG') return base64.b64encode(buffered.getvalue()).decode('utf-8') def clear_chat_history(): st.session_state.messages = [] st.session_state['image_select'] = -1 def clear_file_uploader(): st.session_state.uploader_key += 1 st.rerun() def combined_func(func_list): for func in func_list: func() def show_one_or_multiple_images(message, total_image_num, is_input=True): if 'image' in message: if is_input: total_image_num = total_image_num + len(message['image']) if lan == 'English': if len(message['image']) == 1 and total_image_num == 1: label = f"(In this conversation, {len(message['image'])} image was uploaded, {total_image_num} image in total)" elif len(message['image']) == 1 and total_image_num > 1: label = f"(In this conversation, {len(message['image'])} image was uploaded, {total_image_num} images in total)" else: label = f"(In this conversation, {len(message['image'])} images were uploaded, {total_image_num} images in total)" else: label = f"(在本次对话中,上传了{len(message['image'])}张图片,总共上传了{total_image_num}张图片)" upload_image_preview = st.empty() with upload_image_preview.container(): Library(message['image']) if is_input and len(message['image']) > 0: st.markdown(label) def find_bounding_boxes(response): pattern = re.compile(r'\s*(.*?)\s*\s*\s*(\[\[.*?\]\])\s*') matches = pattern.findall(response) results = [] for match in matches: results.append((match[0], eval(match[1]))) returned_image = None for message in st.session_state.messages: if message['role'] == 'user' and 'image' in message and len(message['image']) > 0: last_image = message['image'][-1] width, height = last_image.size returned_image = last_image.copy() draw = ImageDraw.Draw(returned_image) for result in results: line_width = max(1, int(min(width, height) / 200)) random_color = (random.randint(0, 128), random.randint(0, 128), random.randint(0, 128)) category_name, coordinates = result coordinates = [(float(x[0]) / 1000, float(x[1]) / 1000, float(x[2]) / 1000, float(x[3]) / 1000) for x in coordinates] coordinates = [(int(x[0] * width), int(x[1] * height), int(x[2] * width), int(x[3] * height)) for x in coordinates] for box in coordinates: draw.rectangle(box, outline=random_color, width=line_width) font = ImageFont.truetype('static/SimHei.ttf', int(20 * line_width / 2)) text_size = font.getbbox(category_name) text_width, text_height = text_size[2] - text_size[0], text_size[3] - text_size[1] text_position = (box[0], max(0, box[1] - text_height)) draw.rectangle( [text_position, (text_position[0] + text_width, text_position[1] + text_height)], fill=random_color ) draw.text(text_position, category_name, fill='white', font=font) return returned_image if len(matches) > 0 else None def query_image_generation(response, sd_worker_url, timeout=15): sd_worker_url = f'{sd_worker_url}/generate_image/' pattern = r'```drawing-instruction\n(.*?)\n```' match = re.search(pattern, response, re.DOTALL) if match: payload = {'caption': match.group(1)} print('drawing-instruction:', payload) response = requests.post(sd_worker_url, json=payload, timeout=timeout) response.raise_for_status() # 检查HTTP请求是否成功 image = Image.open(BytesIO(response.content)) return image else: return None def regenerate(): st.session_state.messages = st.session_state.messages[:-1] st.rerun() logo_code = """ InternVL2 Demo """ # App title st.set_page_config(page_title='InternVL2') if 'uploader_key' not in st.session_state: st.session_state.uploader_key = 0 # 如果用户要求绘图,请以生成符合Stable Diffusion要求的、满足```drawing-instruction\n{instruction}\n```格式的绘图指令。 system_message = """我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。人工智能实验室致力于原始技术创新,开源开放,共享共创,推动科技进步和产业发展。 对于目标检测任务,请按照以下格式输出坐标框:某类物体[[x1, y1, x2, y2], ...] 对于画画任务,请按照以下格式输出绘图指令,注意指令需要英文:```drawing-instruction\n{instruction}\n``` 在处理输入包含多张图像的情况下,请严格按照以下规则区分和处理每一张图像,并小心区分用户的提问针对的是哪一张图片: 1. 图像编号和标记:每张图像都将使用明确的编号标记,例如 "Image-1: ","Image-2: ","Image-3: " 等等。 2. 用户提问关联:用户的提问可能会具体指向某一张编号的图像,请仔细辨别用户问题中提到的图像编号。 请尽可能详细地回答用户的问题。""" # Replicate Credentials with st.sidebar: model_list = get_model_list() # "[![Open in GitHub](https://github.com/codespaces/badge.svg)](https://github.com/OpenGVLab/InternVL)" lan = st.selectbox('#### Language / 语言', ['English', '中文'], on_change=st.rerun) if lan == 'English': st.logo(logo_code, link='https://github.com/OpenGVLab/InternVL', icon_image=logo_code) st.subheader('Models and parameters') selected_model = st.sidebar.selectbox('Choose a InternVL2 chat model', model_list, key='selected_model', on_change=clear_chat_history) with st.expander('🤖 System Prompt'): persona_rec = st.text_area('System Prompt', value=system_message, help='System prompt is a pre-defined message used to instruct the assistant at the beginning of a conversation.', height=200) with st.expander('🔥 Advanced Options'): temperature = st.slider('temperature', min_value=0.0, max_value=1.0, value=0.8, step=0.1) top_p = st.slider('top_p', min_value=0.0, max_value=1.0, value=0.7, step=0.1) repetition_penalty = st.slider('repetition_penalty', min_value=1.0, max_value=1.5, value=1.1, step=0.02) max_length = st.slider('max_length', min_value=0, max_value=4096, value=2048, step=128) max_input_tiles = st.slider('max_input_tiles (control image resolution)', min_value=1, max_value=24, value=12, step=1) upload_image_preview = st.empty() uploaded_files = st.file_uploader('Upload files', accept_multiple_files=True, type=['png', 'jpg', 'jpeg', 'webp'], help='You can upload multiple images (max to 4) or a single video.', key=f'uploader_{st.session_state.uploader_key}', on_change=st.rerun) uploaded_pil_images = load_upload_file_and_show() else: st.subheader('模型和参数') selected_model = st.sidebar.selectbox('选择一个 InternVL2 对话模型', model_list, key='selected_model', on_change=clear_chat_history) with st.expander('🤖 系统提示'): persona_rec = st.text_area('系统提示', value=system_message, help='系统提示是在对话开始时用于指示助手的预定义消息。', height=200) with st.expander('🔥 高级选项'): temperature = st.slider('temperature', min_value=0.0, max_value=1.0, value=0.8, step=0.1) top_p = st.slider('top_p', min_value=0.0, max_value=1.0, value=0.7, step=0.1) repetition_penalty = st.slider('重复惩罚', min_value=1.0, max_value=1.5, value=1.1, step=0.02) max_length = st.slider('最大输出长度', min_value=0, max_value=4096, value=2048, step=128) max_input_tiles = st.slider('最大图像块数 (控制图像分辨率)', min_value=1, max_value=24, value=12, step=1) upload_image_preview = st.empty() uploaded_files = st.file_uploader('上传文件', accept_multiple_files=True, type=['png', 'jpg', 'jpeg', 'webp'], help='你可以上传多张图像(最多4张)或者一个视频。', key=f'uploader_{st.session_state.uploader_key}', on_change=st.rerun) uploaded_pil_images = load_upload_file_and_show() gradient_text_html = """
InternVL2
""" if lan == 'English': st.markdown(gradient_text_html, unsafe_allow_html=True) st.caption('Expanding Performance Boundaries of Open-Source Multimodal Large Language Models') else: st.markdown(gradient_text_html.replace('InternVL2', '书生·万象'), unsafe_allow_html=True) st.caption('扩展开源多模态大语言模型的性能边界') # Store LLM generated responses if 'messages' not in st.session_state.keys(): clear_chat_history() gallery_placeholder = st.empty() with gallery_placeholder.container(): images = ['gallery/prod_en_17.png', 'gallery/astro_on_unicorn.png', 'gallery/prod_12.png', 'gallery/prod_9.jpg', 'gallery/prod_4.png', 'gallery/cheetah.png', 'gallery/prod_1.jpeg'] images = [Image.open(image) for image in images] if lan == 'English': captions = ["I'm on a diet, but I really want to eat them.", 'Could you help me draw a picture like this one?', 'What are the consequences of the easy decisions shown in this image?', "What's at the far end of the image?", 'Is this a real plant? Analyze the reasons.', 'Detect the the middle leopard in the image with its bounding box.', 'What is the atmosphere of this image?'] else: captions = ['我在减肥,但我真的很想吃这个。', '请画一张类似这样的画', '这张图上 easy decisions 导致了什么后果?', '画面最远处是什么?', '这是真的植物吗?分析原因', '在以下图像中进行目标检测,并标出所有物体。', '这幅图的氛围如何?'] img_idx = image_select( label='', images=images, captions=captions, use_container_width=True, index=-1, return_value='index', key='image_select' ) if lan == 'English': st.caption('Note: For non-commercial research use only. AI responses may contain errors. Users should not spread or allow others to spread hate speech, violence, pornography, or fraud-related harmful information.') else: st.caption('注意:仅限非商业研究使用。用户应不传播或允许他人传播仇恨言论、暴力、色情内容或与欺诈相关的有害信息。') if img_idx != -1 and len(st.session_state.messages) == 0 and selected_model is not None: gallery_placeholder.empty() st.session_state.messages.append({'role': 'user', 'content': captions[img_idx], 'image': [images[img_idx]]}) st.rerun() # Fixed an issue where examples were not emptied if len(st.session_state.messages) > 0: gallery_placeholder.empty() # Display or clear chat messages total_image_num = 0 for message in st.session_state.messages: with st.chat_message(message['role']): st.markdown(message['content']) show_one_or_multiple_images(message, total_image_num, is_input=message['role'] == 'user') if 'image' in message and message['role'] == 'user': total_image_num += len(message['image']) input_disable_flag = (len(model_list) == 0) or total_image_num + len(uploaded_files) > max_image_limit if lan == 'English': st.sidebar.button('Clear Chat History', on_click=partial(combined_func, func_list=[clear_chat_history, clear_file_uploader])) if input_disable_flag: prompt = st.chat_input('Too many images have been uploaded. Please clear the history.', disabled=input_disable_flag) else: prompt = st.chat_input('Send messages to InternVL', disabled=input_disable_flag) else: st.sidebar.button('清空聊天记录', on_click=partial(combined_func, func_list=[clear_chat_history, clear_file_uploader])) if input_disable_flag: prompt = st.chat_input('输入的图片太多了,请清空历史记录。', disabled=input_disable_flag) else: prompt = st.chat_input('给 “InternVL” 发送消息', disabled=input_disable_flag) alias_instructions = { '目标检测': '在以下图像中进行目标检测,并标出所有物体。', '检测': '在以下图像中进行目标检测,并标出所有物体。', 'object detection': 'Please identify and label all objects in the following image.', 'detection': 'Please identify and label all objects in the following image.' } if prompt: prompt = alias_instructions[prompt] if prompt in alias_instructions else prompt gallery_placeholder.empty() image_list = uploaded_pil_images st.session_state.messages.append({'role': 'user', 'content': prompt, 'image': image_list}) with st.chat_message('user'): st.write(prompt) show_one_or_multiple_images(st.session_state.messages[-1], total_image_num, is_input=True) if image_list: clear_file_uploader() # Generate a new response if last message is not from assistant if len(st.session_state.messages) > 0 and st.session_state.messages[-1]['role'] != 'assistant': with st.chat_message('assistant'): with st.spinner('Thinking...'): if not prompt: prompt = st.session_state.messages[-1]['content'] response = generate_response(st.session_state.messages) message = {'role': 'assistant', 'content': response} with st.spinner('Drawing...'): if '' in response: has_returned_image = find_bounding_boxes(response) message['image'] = [has_returned_image] if has_returned_image else [] if '```drawing-instruction' in response: has_returned_image = query_image_generation(response, sd_worker_url=sd_worker_url) message['image'] = [has_returned_image] if has_returned_image else [] st.session_state.messages.append(message) show_one_or_multiple_images(message, total_image_num, is_input=False) if len(st.session_state.messages) > 0: col1, col2, col3, col4 = st.columns([1, 1, 1, 1.3]) text1 = 'Clear Chat History' if lan == 'English' else '清空聊天记录' text2 = 'Regenerate' if lan == 'English' else '重新生成' text3 = 'Copy' if lan == 'English' else '复制回答' with col1: st.button(text1, on_click=partial(combined_func, func_list=[clear_chat_history, clear_file_uploader]), key='clear_chat_history_button') with col2: st.button(text2, on_click=regenerate, key='regenerate_button') print(st.session_state.messages)