File size: 16,331 Bytes
3318bf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import streamlit as st
import json
import os
import pandas as pd
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
from dotenv import load_dotenv
load_dotenv()

api_key = os.getenv("MISTRAL_API_KEY")
model = "mistral-large-latest"
client = MistralClient(api_key=api_key)

st.set_page_config(
    page_title="Psychological Safety Dashboard",
    layout="wide"
)

# Set page title
st.title("Conversate: Psychological Safety in the Workplace")

uploaded_file = st.file_uploader("Upload the slack conversation", type=['json'])

# Function to process uploaded file
@st.cache_data(show_spinner=False)
def process_file(uploaded_file):
    json_data = json.load(uploaded_file)
    messages_with_profile = [item for item in json_data if "user_profile" in item]

    conversation = []
    for item in messages_with_profile:
        d = {"user": item["user_profile"]["real_name"], "message": item["text"]}
        conversation.append(d)

    df = []
    for con in conversation:
        user = con['user']
        message = con['message']
        messages = [
            ChatMessage(
                role="user",
                content=f""" Given the message {message}, select the best label for the following categories that fits the message, omit any explanations or details and just respond in form of a python dictionary without any additional spaces or new lines. The dictionary should be in a single line without additional spaces. The keys and values of the dictionary must be enclosed with double quotes:\
                    sentiment = ['positive', 'negative', 'neutral'],\
                    emotions = [ 'admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral'],\
                    toxicity = ['yes', 'no'],\
                    harassment indicators = ['harassment', 'hate speech', 'bullying', 'none'],\
                    sexist = ['yes', 'no'],\
                    spam = ['yes', 'no'],\
                    racism = ['yes', 'no'],\
                    profanity = ['yes', 'no']"""
            )
        ]

        # No streaming
        chat_response = client.chat(
            model=model,
            messages=messages,
        )

        res = json.loads(chat_response.choices[0].message.content)

        df.append({
            'user': user,
            'message': message,
            'sentiment': res['sentiment'],
            'emotions': res['emotions'],
            'toxicity': res['toxicity'],
            'harassment indicators': res['harassment indicators'],
            'sexist': res['sexist'],
            'spam': res['spam'],
            'racism': res['racism'],
            'profanity': res['profanity']
        })

    return pd.DataFrame(df)

# Load data if file is uploaded
if uploaded_file is not None:
    with st.spinner(f"Analyzing the conversation... (This may take a while depending on the size of the conversation)"):
        data = process_file(uploaded_file)

    default_options = list(set(data['user'])) + ['Entire Team']

    # Define color map for each emotion category
    color_map = {
        'admiration': ['#1f77b4', '#98df8a', '#2ca02c', '#d62728'],
        'amusement': ['#ff7f0e', '#98df8a', '#2ca02c', '#d62728'],
        'anger': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
        'annoyance': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
        'approval': ['#1f77b4', '#98df8a', '#2ca02c', '#d62728'],
        'caring': ['#98df8a', '#2ca02c', '#FF69B4', '#d62728'],
        'confusion': ['#ffbb78', '#ff7f0e', '#9467bd', '#d62728'],
        'curiosity': ['#ffbb78', '#ff7f0e', '#9467bd', '#d62728'],
        'desire': ['#2ca02c', '#ff7f0e', '#98df8a', '#d62728'],
        'disappointment': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
        'disapproval': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
        'disgust': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
        'embarrassment': ['#ffbb78', '#ff7f0e', '#9467bd', '#d62728'],
        'excitement': ['#ff7f0e', '#2ca02c', '#98df8a', '#d62728'],
        'fear': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
        'gratitude': ['#98df8a', '#2ca02c', '#1f77b4', '#d62728'],
        'grief': ['#ffbb78', '#d62728', '#bcbd22', '#ff7f0e'],
        'joy': ['#ff7f0e', '#98df8a', '#2ca02c', '#d62728'],
        'love': ['#FF69B4', '#98df8a', '#2ca02c', '#d62728'],
        'nervousness': ['#ffbb78', '#ff7f0e', '#9467bd', '#d62728'],
        'optimism': ['#98df8a', '#2ca02c', '#1f77b4', '#d62728'],
        'pride': ['#98df8a', '#ff7f0e', '#1f77b4', '#d62728'],
        'realization': ['#9467bd', '#ff7f0e', '#ffbb78', '#d62728'],
        'relief': ['#1f77b4', '#98df8a', '#2ca02c', '#d62728'],
        'remorse': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
        'sadness': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
        'surprise': ['#ff7f0e', '#ffbb78', '#9467bd', '#d62728'],
        'neutral': ['#2ca02c', '#98df8a', '#1f77b4', '#d62728']
    }

    with st.sidebar:

        # Create dropdown with default options
        selected_option = st.selectbox("Select the team member:", default_options)

        # Add submit button
        submit = st.button("Submit")

    if submit:
        with st.spinner('Processing messages by {s}...'.format(s=selected_option)):
            

            if selected_option == 'Entire Team':
                msgs = list(data['message'])
                messages = [
                ChatMessage(role="user", content=" Given the messages by the team, describe their communication style. What is they doing right and wrong and how should it be improved for effective communication. What must be done by this team to ensure pyschological safety in the team. Explain in detail. The messages by this team are {m}".format(m=msgs)
                            )
                ]
            else:
                msgs = list(data[data['user'] == selected_option]['message'])
                messages = [
                ChatMessage(role="user", content=" Given the messages by {s}, describe his/her communication style. What is he/she doing right and wrong and how should it be improved for effective communication. What must be done by this person to ensure pyschological safety in the team. Explain in detail. The messages by this person are {m}".format(s=selected_option, m=msgs)
                            )
                ]

            # No streaming
            chat_response = client.chat(
                model=model,
                messages=messages,
            ) 

            st.subheader(f"Team Member Selected: {selected_option}")

            with st.expander("See explanation"):
                st.write(chat_response.choices[0].message.content)


            st.write("")
            st.write("")
            st.write("")

            senti, _, emot = st.columns([4.5,1,4.5])

            with senti:
            
                if selected_option == 'Entire Team':
                    sentiment_labels = list(dict(data['sentiment'].value_counts()).keys())
                    sentiment_values = list(dict(data['sentiment'].value_counts()).values())
                else:
                # Sentiment counts
                    sentiment_labels = list(dict(data[data['user'] == selected_option]['sentiment'].value_counts()).keys())
                    sentiment_values = list(dict(data[data['user'] == selected_option]['sentiment'].value_counts()).values())

                # Define colors for each sentiment category
                colors = ['lightblue', 'lightcoral', 'lightgreen']

                # Create a pie chart
                fig = go.Figure(data=[go.Pie(labels=sentiment_labels, values=sentiment_values)])

                # Update pie chart layout
                fig.update_traces(hoverinfo='label+percent', textinfo='value', textfont_size=20,
                                marker=dict(colors=colors, line=dict(color='#000000', width=2)))

                # Set title
                # fig.update_layout(title='Sentiment Distribution')
                st.subheader("Sentiment Distribution")

                # Display pie chart
                st.plotly_chart(fig, use_container_width=True)

            with _:
                st.write("")

            with emot:

                if selected_option == 'Entire Team':
                    emotion_labels = list(dict(data['emotions'].value_counts()).keys())
                    emotion_values = list(dict(data['emotions'].value_counts()).values())
                else:
                
                    emotion_labels = list(dict(data[data['user'] == selected_option]['emotions'].value_counts()).keys())
                    emotion_values = list(dict(data[data['user'] == selected_option]['emotions'].value_counts()).values())

                predicted_probabilities_ED = [count / sum(emotion_values) for count in emotion_values]

                top_emotions = emotion_labels[:4]
                top_scores = predicted_probabilities_ED[:4]
                # Create the gauge charts for the top 4 emotion categories
                fig = make_subplots(rows=2, cols=2, specs=[[{'type': 'indicator'}, {'type': 'indicator'}],
                                                            [{'type': 'indicator'}, {'type': 'indicator'}]],
                                    vertical_spacing=0.4)

                for i, emotion in enumerate(top_emotions):
                    # Get the emotion category, color, and normalized score for the current emotion
                    category = emotion
                    color = color_map[category]
                    value = top_scores[i] * 100
                    
                    # Calculate the row and column position for adding the trace to the subplots
                    row = i // 2 + 1
                    col = i % 2 + 1
                    
                    # Add a gauge chart trace for the current emotion category
                    fig.add_trace(go.Indicator(
                        domain={'x': [0, 1], 'y': [0, 1]},
                        value=value,
                        mode="gauge+number",
                        title={'text': category.capitalize()},
                        gauge={'axis': {'range': [None, 100]},
                            'bar': {'color': color[3]},
                            'bgcolor': 'white',
                            'borderwidth': 2,
                            'bordercolor': color[1],
                            'steps': [{'range': [0, 33], 'color': color[0]},
                                        {'range': [33, 66], 'color': color[1]},
                                        {'range': [66, 100], 'color': color[2]}],
                            'threshold': {'line': {'color': "black", 'width': 4},
                                            'thickness': 0.5,
                                            'value': 50}}), row=row, col=col)

                # Update the layout of the figure
                fig.update_layout(height=400, margin=dict(t=50, b=5, l=0, r=0))


                # Display gauge charts
                
                st.subheader("Emotion Detection")
            
                st.plotly_chart(fig, use_container_width=True)

            st.write("")
            st.write("")
            st.write("")

            tox, rac, sex, spam, prof = st.columns([2,2,2,2,2])

            with tox:

                #Toxicity
                toxicity = False
                if selected_option == 'Entire Team':
                    toxicity = 'yes' in dict(data['toxicity'].value_counts())
                else:
                    toxicity = 'yes' in dict(data[data['user'] == selected_option]['toxicity'].value_counts())

                if toxicity:
                    st.subheader("Toxicity detected in the conversation.")
                    st.image(f"imgs/toxic_yes.jpeg", width=200)
                else:
                    st.subheader("No toxicity detected in the conversation.")
                    st.image(f"imgs/toxic_no.jpeg", width=200)

            with rac:
                #Racism
                racism = False
                if selected_option == 'Entire Team':
                    racism = 'yes' in dict(data['racism'].value_counts())
                else:
                    racism = 'yes' in dict(data[data['user'] == selected_option]['racism'].value_counts())

                if racism:
                    st.subheader("Racism detected in the conversation.")
                    st.image(f"imgs/racism_yes.jpeg", width=200)
                else:
                    st.subheader("No racism detected in the conversation.")
                    st.image(f"imgs/racism_no.jpeg", width=200)

            with sex:
                #Sexism
                sexism = False
                if selected_option == 'Entire Team':
                    sexism = 'yes' in dict(data['sexist'].value_counts())
                else:
                    sexism = 'yes' in dict(data[data['user'] == selected_option]['sexist'].value_counts())

                if sexism:
                    st.subheader("Sexism detected in the conversation.")
                    st.image(f"imgs/sexism_yes.png", width=200)
                else:
                    st.subheader("No sexism detected in the conversation.")
                    st.image(f"imgs/sexism_no.jpeg", width=200)

            with spam:
                #spam
                spam = False
                if selected_option == 'Entire Team':
                    spam = 'yes' in dict(data['spam'].value_counts())
                else:
                    spam = 'yes' in dict(data[data['user'] == selected_option]['spam'].value_counts())

                if spam:
                    st.subheader("Spam detected in the conversation.")
                    st.image(f"imgs/spam_yes.jpeg", width=200)
                else:
                    st.subheader("No spam detected in the conversation.")
                    st.image(f"imgs/spam_no.png", width=200)

            with prof:
                #profanity
                profanity = False
                if selected_option == 'Entire Team':
                    profanity = 'yes' in dict(data['profanity'].value_counts())
                else:
                    profanity = 'yes' in dict(data[data['user'] == selected_option]['profanity'].value_counts())

                if profanity:
                    st.subheader("Profanity detected in the conversation.")
                    st.image(f"imgs/profanity_yes.jpeg", width=200)
                else:
                    st.subheader("No profanity detected in the conversation.")
                    st.image(f"imgs/profanity_no.jpeg", width=200)

            st.write("")
            st.write("")
            st.write("")

            _, har, __ = st.columns([4,2,4])

            with _:
                st.write("")

            with har:
            
                # Harassment Indicator
                if selected_option == 'Entire Team':
                    harassment = list(dict(data['harassment indicators'].value_counts()).keys())
                else:
                    harassment = list(dict(data[data['user'] == selected_option]['harassment indicators'].value_counts()).keys())
                
                filtered_values = [value for value in harassment if value != 'none']

                if len(filtered_values) > 0:
                    st.subheader(f"Harassment indicators detected in the conversation: {', '.join(filtered_values)}",)
                    st.image(f"imgs/harass_yes.jpeg", width=200)
                else:
                    st.subheader("No harassment indicators detected in the conversation.")
                    st.image(f"imgs/harass_no.jpeg", width=200)

            with __:
                st.write("")


hide_st_style = """
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            </style>
            """
st.markdown(hide_st_style, unsafe_allow_html=True)