File size: 8,010 Bytes
f3007f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import streamlit as st
import requests
import json
import os
from dotenv import load_dotenv
load_dotenv()

# AI model code
HF_API_KEY = os.getenv("HF_API_KEY")

# API_URL_ED = "https://api-inference.huggingface.co/models/j-hartmann/emotion-english-distilroberta-base" #alternate ED model(slow loading on first run)
API_URL_ED = "https://api-inference.huggingface.co/models/bhadresh-savani/bert-base-go-emotion"
API_URL_HS = "https://api-inference.huggingface.co/models/IMSyPP/hate_speech_en"
API_URL_SD = "https://api-inference.huggingface.co/models/NLP-LTU/bertweet-large-sexism-detector"

headers = {"Authorization": f"Bearer {HF_API_KEY}"}

def query(payload):
    response_ED = requests.request("POST", API_URL_ED, headers=headers, json=payload)
    response_HS = requests.request("POST", API_URL_HS, headers=headers, json=payload)
    response_SD = requests.request("POST", API_URL_SD, headers=headers, json=payload)
    return (json.loads(response_ED.content.decode("utf-8")),json.loads(response_HS.content.decode("utf-8")),json.loads(response_SD.content.decode("utf-8")))

st.set_page_config(
    page_title="GoEmotions Dashboard",
    layout="wide"
)

# Set page title
st.title("GoEmotions Dashboard - Analyzing Emotions in Text")

# Define color map for each emotion category
color_map = {
    'admiration': ['#1f77b4', '#98df8a', '#2ca02c', '#d62728'],
    'amusement': ['#ff7f0e', '#98df8a', '#2ca02c', '#d62728'],
    'anger': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
    'annoyance': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
    'approval': ['#1f77b4', '#98df8a', '#2ca02c', '#d62728'],
    'caring': ['#98df8a', '#2ca02c', '#FF69B4', '#d62728'],
    'confusion': ['#ffbb78', '#ff7f0e', '#9467bd', '#d62728'],
    'curiosity': ['#ffbb78', '#ff7f0e', '#9467bd', '#d62728'],
    'desire': ['#2ca02c', '#ff7f0e', '#98df8a', '#d62728'],
    'disappointment': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
    'disapproval': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
    'disgust': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
    'embarrassment': ['#ffbb78', '#ff7f0e', '#9467bd', '#d62728'],
    'excitement': ['#ff7f0e', '#2ca02c', '#98df8a', '#d62728'],
    'fear': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
    'gratitude': ['#98df8a', '#2ca02c', '#1f77b4', '#d62728'],
    'grief': ['#ffbb78', '#d62728', '#bcbd22', '#ff7f0e'],
    'joy': ['#ff7f0e', '#98df8a', '#2ca02c', '#d62728'],
    'love': ['#FF69B4', '#98df8a', '#2ca02c', '#d62728'],
    'nervousness': ['#ffbb78', '#ff7f0e', '#9467bd', '#d62728'],
    'optimism': ['#98df8a', '#2ca02c', '#1f77b4', '#d62728'],
    'pride': ['#98df8a', '#ff7f0e', '#1f77b4', '#d62728'],
    'realization': ['#9467bd', '#ff7f0e', '#ffbb78', '#d62728'],
    'relief': ['#1f77b4', '#98df8a', '#2ca02c', '#d62728'],
    'remorse': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
    'sadness': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
    'surprise': ['#ff7f0e', '#ffbb78', '#9467bd', '#d62728'],
    'neutral': ['#2ca02c', '#98df8a', '#1f77b4', '#d62728']
}


# Labels for Hate Speech Classification
label_hs = {"LABEL_0": "Acceptable", "LABEL_1": "Inappropriate", "LABEL_2": "Offensive", "LABEL_3": "Violent"}


# Define default options

default_options = [
    "I'm so excited for my vacation next week!",
    "I'm feeling so stressed about work.",
    "I just received great news from my doctor!",
    "I can't wait to see my best friend tomorrow.",
    "I'm feeling so lonely and sad today."
    "I'm so angry at my neighbor for being so rude.",
    "You are so annoying!",
    "You people from small towns are so dumb.",
    "If you don't agree with me, you are a moron.",
    "I hate you so much!",
    "If you don't listen to me, I'll beat you up!",
]

with st.sidebar:

    # Create dropdown with default options
    selected_option = st.selectbox("Select a default option or enter your own text:", default_options)

    # Display text input with selected option as default value
    text_input = st.text_area("Enter text to analyze emotions:", value = selected_option, height=100)

    # Add submit button
    submit = st.button("Submit")

# If submit button is clicked
if submit:

    # Call API and get predicted probabilities for each emotion category and hate speech classification
    payload = {"inputs": text_input, "options": {"wait_for_model": True, "use_cache": True}}
    response_ED, response_HS, response_SD = query(payload)
    predicted_probabilities_ED = response_ED[0]
    predicted_probabilities_HS = response_HS[0]
    predicted_probabilities_SD = response_SD[0]

    # Creating columns to visualize the results 
    ED, _, HS, __, SD = st.columns([4,1,2,1,2])

    with ED:
        # Get the top 4 emotion categories and their scores
        top_emotions = predicted_probabilities_ED[:4]
        top_scores = [e['score'] for e in top_emotions]

        # Create the gauge charts for the top 4 emotion categories
        fig = make_subplots(rows=2, cols=2, specs=[[{'type': 'indicator'}, {'type': 'indicator'}],
                                                    [{'type': 'indicator'}, {'type': 'indicator'}]],
                            vertical_spacing=0.4)

        for i, emotion in enumerate(top_emotions):
            # Get the emotion category, color, and normalized score for the current emotion
            category = emotion['label']
            color = color_map[category]
            value = top_scores[i] * 100
            
            # Calculate the row and column position for adding the trace to the subplots
            row = i // 2 + 1
            col = i % 2 + 1
            
            # Add a gauge chart trace for the current emotion category
            fig.add_trace(go.Indicator(
                domain={'x': [0, 1], 'y': [0, 1]},
                value=value,
                mode="gauge+number",
                title={'text': category.capitalize()},
                gauge={'axis': {'range': [None, 100]},
                    'bar': {'color': color[3]},
                    'bgcolor': 'white',
                    'borderwidth': 2,
                    'bordercolor': color[1],
                    'steps': [{'range': [0, 33], 'color': color[0]},
                                {'range': [33, 66], 'color': color[1]},
                                {'range': [66, 100], 'color': color[2]}],
                    'threshold': {'line': {'color': "black", 'width': 4},
                                    'thickness': 0.5,
                                    'value': 50}}), row=row, col=col)

        # Update the layout of the figure
        fig.update_layout(height=400, margin=dict(t=50, b=5, l=0, r=0))


        # Display gauge charts
        st.text("")
        st.text("")
        st.text("")
        st.subheader("Emotion Detection")
        st.text("")
        st.plotly_chart(fig, use_container_width=True)
    
    with _:
        st.text("")
        

    with HS:
        # Display Hate Speech Classification
        hate_detection = label_hs[predicted_probabilities_HS[0]['label']]
        st.text("")
        st.text("")
        st.text("")
        st.subheader("Hate Speech Analysis")
        st.text("")
        st.image(f"assets/{hate_detection}.jpg", width=200)
        st.text("")
        st.text("")
        st.markdown(f"#### The given text is: {hate_detection}")

    with __:
        st.text("")

    with SD:
        label_SD = predicted_probabilities_SD[0]['label'].title()
        st.text("")
        st.text("")
        st.text("")
        st.subheader("Sexism Detection")
        st.text("")
        st.image(f"assets/{label_SD}.jpg", width=200)
        st.text("")
        st.text("")
        st.markdown(f"#### The given text is: {label_SD}")

        


 


hide_st_style = """
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            </style>
            """
st.markdown(hide_st_style, unsafe_allow_html=True)