Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,264 Bytes
58cafdb 927931c 58cafdb d7e5659 58cafdb 9149806 58cafdb c67e757 58cafdb a1dd53c 58cafdb d5057e8 58cafdb 75e2722 58cafdb ad3ebf5 58cafdb 9149806 58cafdb b60aecf c67e757 b60aecf 58cafdb b60aecf 58cafdb 2fa7bce 4afc417 58cafdb 2fa7bce 58cafdb 9ba2a1c d7e5659 927931c 58cafdb bc16417 58cafdb 4c609c5 0f7bc3d 4c609c5 58cafdb 9ba2a1c a1dd53c 190e289 418f143 75e2722 418f143 58cafdb 3348f02 d7e5659 0f7bc3d d7e5659 0ffaaa6 d7e5659 e07f7f3 58cafdb e07f7f3 58cafdb e07f7f3 58cafdb 5d8cdf1 3348f02 418f143 ecdd55f 3348f02 6f3ebe7 418f143 58cafdb 96c76ae a1dd53c 58cafdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import torch
import time
import moviepy.editor as mp
import psutil
import gradio as gr
import spaces
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import base64
import requests
DEFAULT_MODEL_NAME = "distil-whisper/distil-large-v3"
DEFAULT_MODEL_NAME = "openai/whisper-large-v3"
BATCH_SIZE = 8
print('start app')
device = 0 if torch.cuda.is_available() else "cpu"
if device == "cpu":
DEFAULT_MODEL_NAME = "openai/whisper-tiny"
def load_pipeline(model_name):
return pipeline(
task="automatic-speech-recognition",
model=model_name,
chunk_length_s=30,
device=device,
)
pipe = load_pipeline(DEFAULT_MODEL_NAME)
openai_pipe=load_pipeline("openai/whisper-large-v3")
default_pipe = load_pipeline(DEFAULT_MODEL_NAME)
#pipe = None
from gpustat import GPUStatCollection
def update_gpu_status():
if torch.cuda.is_available() == False:
return "No Nvidia Device"
try:
gpu_stats = GPUStatCollection.new_query()
for gpu in gpu_stats:
# Assuming you want to monitor the first GPU, index 0
gpu_id = gpu.index
gpu_name = gpu.name
gpu_utilization = gpu.utilization
memory_used = gpu.memory_used
memory_total = gpu.memory_total
memory_utilization = (memory_used / memory_total) * 100
gpu_status=(f"GPU {gpu_id}: {gpu_name}, Utilization: {gpu_utilization}%, Memory Used: {memory_used}MB, Memory Total: {memory_total}MB, Memory Utilization: {memory_utilization:.2f}%")
return gpu_status
except Exception as e:
print(f"Error getting GPU stats: {e}")
return torch_update_gpu_status()
def torch_update_gpu_status():
if torch.cuda.is_available():
gpu_info = torch.cuda.get_device_name(0)
gpu_memory = torch.cuda.mem_get_info(0)
total_memory = gpu_memory[1] / (1024 * 1024)
free_memory=gpu_memory[0] /(1024 *1024)
used_memory = (gpu_memory[1] - gpu_memory[0]) / (1024 * 1024)
gpu_status = f"GPU: {gpu_info} Free Memory:{free_memory}MB Total Memory: {total_memory:.2f} MB Used Memory: {used_memory:.2f} MB"
else:
gpu_status = "No GPU available"
return gpu_status
def update_cpu_status():
import datetime
# Get the current time
current_time = datetime.datetime.now().time()
# Convert the time to a string
time_str = current_time.strftime("%H:%M:%S")
cpu_percent = psutil.cpu_percent()
cpu_status = f"CPU Usage: {cpu_percent}% {time_str}"
return cpu_status
@spaces.GPU
def update_status():
try:
# code that might raise an error
gpu_status = update_gpu_status()
cpu_status = update_cpu_status()
sys_status=gpu_status+"\n\n"+cpu_status
return sys_status
except Exception as e:
# catch all other exceptions
print(f"An error occurred: {e}")
def refresh_status():
return update_status()
@spaces.GPU
def transcribe(audio_path, model_name):
print(str(time.time())+' start transcribe ')
if audio_path is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
if model_name is None:
model_name=DEFAULT_MODEL_NAME
audio_path=audio_path.strip()
model_name=model_name.strip()
global pipe
if model_name != pipe.model.name_or_path:
print("old model is:"+ pipe.model.name_or_path )
if model_name=="openai/whisper-large-v3":
pipe=openai_pipe
print(str(time.time())+" use openai model " + pipe.model.name_or_path)
elif model_name==DEFAULT_MODEL_NAME:
pipe=default_pipe
print(str(time.time())+" use default model " + pipe.model.name_or_path)
else:
print(str(time.time())+' start load model ' + model_name)
pipe = load_pipeline(model_name)
print(str(time.time())+' finished load model ' + model_name)
start_time = time.time() # Record the start time
print(str(time.time())+' start processing and set recording start time point')
# Load the audio file and calculate its duration
audio = mp.AudioFileClip(audio_path)
audio_duration = audio.duration
print(str(time.time())+' start pipe ')
text = pipe(audio_path, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
end_time = time.time() # Record the end time
transcription_time = end_time - start_time # Calculate the transcription time
# Create the transcription time output with additional information
transcription_time_output = (
f"Transcription Time: {transcription_time:.2f} seconds\n"
f"Audio Duration: {audio_duration:.2f} seconds\n"
f"Model Used: {model_name}\n"
f"Device Used: {'GPU' if torch.cuda.is_available() else 'CPU'}"
)
print(str(time.time())+' return transcribe '+ text )
return text, transcription_time_output
@spaces.GPU
def handle_upload_audio(audio_path,model_name,old_transcription=''):
print('old_trans:' + old_transcription)
(text,transcription_time_output)=transcribe(audio_path,model_name)
return text+'\n\n'+old_transcription, transcription_time_output
def handle_base64_audio(base64_data, model_name, old_transcription=''):
# Decode base64 data and save it as a temporary audio file
binary_data = base64.b64decode(base64_data)
audio_path = "temp_audio.wav"
with open(audio_path, "wb") as f:
f.write(binary_data)
# Transcribe the audio file
(text, transcription_time_output) = transcribe(audio_path, model_name)
# Remove the temporary audio file
import os
os.remove(audio_path)
return text + '\n\n' + old_transcription, transcription_time_output
graudio=gr.Audio(type="filepath",show_download_button=True)
grmodel_textbox=gr.Textbox(
label="Model Name",
value=DEFAULT_MODEL_NAME,
placeholder="Enter the model name",
info="Some available models: distil-whisper/distil-large-v3 distil-whisper/distil-medium.en Systran/faster-distil-whisper-large-v3 Systran/faster-whisper-large-v3 Systran/faster-whisper-medium openai/whisper-tiny, openai/whisper-base, openai/whisper-medium, openai/whisper-large-v3",
)
groutputs=[gr.TextArea(label="Transcription",elem_id="transcription_textarea",interactive=True,lines=20,show_copy_button=True),
gr.TextArea(label="Transcription Info",interactive=True,show_copy_button=True)]
mf_transcribe = gr.Interface(
fn=handle_upload_audio,
inputs=[
graudio, #"numpy" or filepath
#gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
grmodel_textbox,
],
outputs=groutputs,
theme="huggingface",
title="Whisper Transcription",
description=(
"Scroll to Bottom to show system status. "
"Transcribe long-form microphone or audio file after uploaded audio! "
"Notice: the space need some time to get a gpu to run, so there may be a delay "
),
allow_flagging="never",
)
grmodel_textbox_64=gr.Textbox(
label="Model Name",
value=DEFAULT_MODEL_NAME,
placeholder="Enter the model name",
info="Some available models: distil-whisper/distil-large-v3 distil-whisper/distil-medium.en Systran/faster-distil-whisper-large-v3 Systran/faster-whisper-large-v3 Systran/faster-whisper-medium openai/whisper-tiny, openai/whisper-base, openai/whisper-medium, openai/whisper-large-v3",
)
groutputs_64=[gr.TextArea(label="Transcription 64",elem_id="transcription_textarea_64",interactive=True,lines=20,show_copy_button=True),
gr.TextArea(label="Transcription Info 64",interactive=True,show_copy_button=True)]
base_transcribe= gr.Interface(
fn=handle_base64_audio,
inputs=[
gr.Textbox(label="Base64 Audio Data URL", placeholder="Enter the base64 audio data URL"),
grmodel_textbox_64,
],
outputs=groutputs_64,
)
demo = gr.Blocks()
#@spaces.GPU
def onload():
print('onload')
#return "System Status: "+update_status();
with demo:
tabbed_interface = gr.TabbedInterface(
[
mf_transcribe,
base_transcribe
],
["Audio", "Base64 Audio"],
)
with gr.Row():
refresh_button = gr.Button("Refresh Status")
sys_status_output = gr.Textbox(label="System Status", interactive=False)
# Link the refresh button to the refresh_status function
refresh_button.click(refresh_status, None, [sys_status_output])
graudio.stop_recording(handle_upload_audio, inputs=[graudio, grmodel_textbox, groutputs[0]], outputs=groutputs)
graudio.upload(handle_upload_audio, inputs=[graudio, grmodel_textbox, groutputs[0]], outputs=groutputs)
# Load the initial status using update_status function
demo.load(onload, inputs=None, outputs=sys_status_output, queue=False)
# Launch the Gradio app
demo.launch(share=True)
print('launched\n\n')
|