File size: 5,154 Bytes
1f7af69
 
a67942c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b5f276
a67942c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
os.system("pip install git+https://github.com/openai/whisper.git")
import gradio as gr
import whisper

model = whisper.load_model("base")



        
def inference(audio):
  result = model.transcribe(audio)
  print(result["text"])
  return result["text"]


title="Whisper"

description="Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification."

css = """
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
        }
     
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .prompt h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
"""

block = gr.Blocks(css=css)



with block:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 650px; margin: 0 auto;">
              <div
                style="
                  display: inline-flex;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                  margin-bottom: 10px;
                  margin-left: 220px;
                  justify-content: center;
                "
              >
              <a href="https://github.com/PaddlePaddle/PaddleHub"><img src="https://user-images.githubusercontent.com/22424850/187387422-f6c9ccab-7fda-416e-a24d-7d6084c46f67.jpg" alt="Paddlehub" width="40%"></a>
              </div> 
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                  margin-bottom: 10px;
                  justify-content: center;
                ">
              <a href="https://github.com/PaddlePaddle/PaddleHub"><h1 style="font-weight: 900; margin-bottom: 7px;">
                  ERNIE-ViLG Demo
              </h1></a>
              </div> 
              <p style="margin-bottom: 10px; font-size: 94%">
                ERNIE-ViLG is a state-of-the-art text-to-image model that generates
                images from Chinese text.
              </p>
              <a href="https://github.com/PaddlePaddle/PaddleHub"><img src="https://user-images.githubusercontent.com/22424850/188184795-98605a22-9af2-4106-827b-e58548f8892f.png" alt="star Paddlehub" width="100%"></a>
            </div>
        """
    )
    with gr.Group():
        with gr.Box():
            with gr.Row().style(mobile_collapse=False, equal_height=True):
                audio = gr.Audio(
                    label="Input Audio",
                    show_label=False,
                ).style(
                    rounded=(True, False, False, True),
                    container=False,
                )

                btn = gr.Button("Transcribe").style(
                    margin=False,
                    rounded=(False, True, True, False),
                )
        text = gr.Textbox(
        ).style(height="auto")
        


        
        btn.click(inference, inputs=[audio], outputs=[text])
 
        gr.HTML('''
        <div class="footer">
                    <p>Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a> and <a href="https://wenxin.baidu.com" style="text-decoration: underline;" target="_blank">文心大模型</a> - Gradio Demo by 🤗 Hugging Face
                    </p>
        </div>
        ''')

block.launch()